Skip Nav Destination
Close Modal
By
Peter F. Ellis, II
By
Luis A. Ganhao, Jorge J. Perdomo, James McVay, Antonio Seijas
By
Hongli Zhang, Robert Dierkes, Wolfgang R. Streit
By
Samuel J. Brown
By
G. Mark Tanner
By
Jim Stott
By
Sergio N. Monteiro, Paulo Augusto M. Araujo
By
Friedrich Karl Naumann, Ferdinand Spies
By
Friedrich Karl Naumann, Ferdinand Spies
By
Friedrich Karl Naumann, Ferdinand Spies
By
Richard L. Colwell
Search Results for
chemical processing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 867
Search Results for chemical processing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0060104
EISBN: 978-1-62708-220-4
... Abstract Eddy current inspection was performed on a vertical evaporator unit (that contained 180 tubes) used in a chemical processing plant. It was advised that the tube material was type 316 stainless steel. The shell-side fluid was condensate and gaseous methylene chloride, while the tube...
Abstract
Eddy current inspection was performed on a vertical evaporator unit (that contained 180 tubes) used in a chemical processing plant. It was advised that the tube material was type 316 stainless steel. The shell-side fluid was condensate and gaseous methylene chloride, while the tube-side fluid was contaminated liquid methylene chloride. More than 100 tubes exhibiting severe outer surface pitting and cracklike indications near each tube sheet were revealed during eddy current inspection. It was observed that the indications correlated with rust-stained, pitted, and cracked areas on the outer surfaces. The cracking was revealed by metallographic examination to have initiated from the outer surface, frequently at pits, and penetrated the tube wall in a transgranular, branching fashion. The crack features were characteristic of chloride stress-corrosion cracking. A change in tube material was recommended to avoid future failures and loss of service.
Book
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.9781627082204
EISBN: 978-1-62708-220-4
Book Chapter
Corrosion Failure of a Chemical Process Piping Cross-Tee Assembly
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001325
EISBN: 978-1-62708-215-0
... Abstract A carbon steel piping cross-tee assembly which conveyed hydrogen sulfide (H7S) process gas at 150 to 275 deg C (300 to 585 deg F) with a maximum allowable operating pressure of 3 MPa (450 psig) ruptured at the toe of one of the welds at the cross after several years of service...
Abstract
A carbon steel piping cross-tee assembly which conveyed hydrogen sulfide (H7S) process gas at 150 to 275 deg C (300 to 585 deg F) with a maximum allowable operating pressure of 3 MPa (450 psig) ruptured at the toe of one of the welds at the cross after several years of service. The failure was initially thought to be the result of thermal fatigue, and the internal surfaces exhibited the “elephant hide” pattern characteristic of thermal fatigue. However metallographic failure analysis found that this pattern was the result of corrosion rather than thermal fatigue. Corrosion caused failure at this location because the weld was abnormally thin as fabricated. Thus, failure resulted from inadequate deposition of weld metal and subsequent wall thinning from internal corrosion. It was recommended that the cross-tee be replaced with a like component, with more careful attention to weld quality.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0091690
EISBN: 978-1-62708-234-1
... Abstract A substantial number of copper alloy C27000 (yellow brass, 65Cu-35Zn) ferrules for electrical fuses cracked while in storage and while in service in paper mills and other chemical processing plants. The ferrules, made by three different manufacturers, were of several sizes. One...
Abstract
A substantial number of copper alloy C27000 (yellow brass, 65Cu-35Zn) ferrules for electrical fuses cracked while in storage and while in service in paper mills and other chemical processing plants. The ferrules, made by three different manufacturers, were of several sizes. One commonly used ferrule was 3.5 cm long by 7.5 cm in diam and was drawn from 0.5 mm (0.020 in.) thick strip. Investigation (visual inspection, metallographic examination, and a mercurous nitrate test, which is an accelerated test used to detect residual stress in copper and copper alloys) of both ferrules from fuses in service and storage in different types of plants, and ferrules from newly manufactured fuses, supported the conclusion that the ferrules failed by SCC resulting from residual stresses induced during forming and the ambient atmospheres in the chemical plants. The atmosphere in the paper mills was the most detrimental, and the higher incidence of cracking of ferrules there was apparently related to a higher concentration of ammonia in conjunction with high humidity. Recommendations included specifying that the fuses meet the requirements of ASTM B 154.
Book Chapter
Failure of a Buried Type 304L Stainless Steel Drain Line by Galvanic Attack
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046535
EISBN: 978-1-62708-234-1
... Abstract One of five underground drain lines intended to carry a highly acidic effluent from a chemical-processing plant to distant holding tanks failed in just a few months. Each line was made of 304L stainless steel pipe 73 mm (2 in.) in diam with a 5 mm (0.203 in.) wall thickness. Lengths...
Abstract
One of five underground drain lines intended to carry a highly acidic effluent from a chemical-processing plant to distant holding tanks failed in just a few months. Each line was made of 304L stainless steel pipe 73 mm (2 in.) in diam with a 5 mm (0.203 in.) wall thickness. Lengths of pipe were joined by shielded metal arc welding. Soundness of the welded joints was determined by water back-pressure testing after several lengths of pipe had been installed and joined. Before completion of the pipeline, a pressure drop was observed during back-pressure testing. An extreme depression in the backfill revealed the site of failure. Analysis (visual inspection, electrical conductivity, and soil analysis) supported the conclusions that the failure had resulted from galvanic corrosion at a point where the corrosivity of the soil was substantially greater than the average, resulting in a voltage decrease near the point of failure of about 1.3 to 1.7 V. Recommendations included that the pipelines be asphalt coated and enclosed in a concrete trough with a concrete cover. Also, magnesium anodes, connected electrically to each line, should be installed at periodic intervals along their entire length to provide cathodic protection.
Book Chapter
Failures of Pressure Vessels and Process Piping
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
... Abstract This article discusses pressure vessels, piping, and associated pressure-boundary items of the types used in nuclear and conventional power plants, refineries, and chemical-processing plants. It begins by explaining the necessity of conducting a failure analysis, followed...
Abstract
This article discusses pressure vessels, piping, and associated pressure-boundary items of the types used in nuclear and conventional power plants, refineries, and chemical-processing plants. It begins by explaining the necessity of conducting a failure analysis, followed by the objectives of a failure analysis. Then, the article discusses the processes involved in failure analysis, including codes and standards. Next, fabrication flaws that can develop into failures of in-service pressure vessels and piping are covered. This is followed by sections discussing in-service mechanical and metallurgical failures, environment-assisted cracking failures, and other damage mechanisms that induce cracking failures. Finally, the article provides information on inspection practices.
Book Chapter
Microbial Degradation of Plastics
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006866
EISBN: 978-1-62708-395-9
... Abstract Microbial degradation in the environment is initiated by abiotic (nonliving physical or chemical) processes. Mechanical weathering and other mechanical processes are the main drivers of the initial degradation. This article presents an overview of weathering and biodegradation...
Abstract
Microbial degradation in the environment is initiated by abiotic (nonliving physical or chemical) processes. Mechanical weathering and other mechanical processes are the main drivers of the initial degradation. This article presents an overview of weathering and biodegradation. It summarizes the main synthetic polymers that are released and available for bacterial and fungal decomposition. The article also presents a detailed discussion on the enzymes that are involved in plastic degradation, and the measurement of polymer degradation.
Book Chapter
Brittle Fracture of a Cast Iron Valve in Oleum and Sulfuric Acid Service
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001071
EISBN: 978-1-62708-214-3
... Abstract A gray cast iron (ASTM 247 type A) gate valve in an oleum and sulfuric acid piping loop at a chemical process plant fractured catastrophically after approximately 10 years of service. The valve was a 150 mm (6 in.) bolted flange type rated to conform to ANSI B16.1 for service at 1034...
Abstract
A gray cast iron (ASTM 247 type A) gate valve in an oleum and sulfuric acid piping loop at a chemical process plant fractured catastrophically after approximately 10 years of service. The valve was a 150 mm (6 in.) bolted flange type rated to conform to ANSI B16.1 for service at 1034 kPa (150 psi) and 120 deg C (250 deg F) maximum in 93 to 99% sulfuric acid. The fracture originated at stress-corrosion cracks that occurred in a high-stress transition region at the valve body-to-flange juncture. The mechanical properties of the failed valve were below those of the manufacturer's cited specification, and the wall thickness through which the fracture occurred exceeded the minimum 9.5 mm (38 in.) thickness cited by the manufacturer The valve flange had been unbolted and rebolted to a maintenanced piping coil immediately prior to failure. It was recommended that the flange-to-valve body juncture be redesigned to reduce stress levels. A method of maintenance and inspection in concert with a criterion for life prediction for this and other valves and components in the system was also recommended.
Book Chapter
Hydrogen Embrittlement Failure of Socket Head Cap Screws
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001101
EISBN: 978-1-62708-214-3
... plating Chemical processing equipment Chemical processing industry Regenerators Valves Cadmium-coated steel Surface treatment related failures Hydrogen damage and embrittlement Background Several cadmium-plated carbon steel socket head cap screws failed. Applications The cap screws...
Abstract
Several cadmium-plated carbon steel socket head cap screws that were part of a slide valve assembly on a regenerator line in a petrochemical plant failed during initial loading. Metallographic and XDS chemical analysis in conjunction with SEM examination of one failed and one unfailed cap screw indicated that the screws had failed by hydrogen embrittlement. The plating process was the likely source of the hydrogen. It was recommended that the remainder of the cap screws from the same lot as the failed screws be baked at approximately 190 deg C (375 deg F) for 24 h.
Book Chapter
Rapid Pitting Failure of Type 304 Stainless Steel Pipework
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001064
EISBN: 978-1-62708-214-3
... hydrotesting procedures was recommended to prevent similar failures. Bacterial corrosion Chemical processing equipment, corrosion Leakage Pipe, corrosion 304 UNS S30400 Biological corrosion Pitting corrosion Background The type 304 stainless steel pipelines, vessels, and tanks...
Abstract
Several hundred leaks were reported in the type 304 stainless steel pipelines, vessels, and tanks of a chemical plant at a tropical location within a few weeks after startup. Investigation of the failure involved a site visit, metallographic examination and analysis of the material, analysis of hydrotest waters, and microbiological examination of slime that had formed in certain pipework sections. It was determined that the failure resulted from microbially induced corrosion promoted by the use of poor-quality hydrotest water and uncontrolled hydrotesting practice. Use of appropriate hydrotesting procedures was recommended to prevent similar failures.
Book Chapter
Weld Decay and Stress-Corrosion Cracking in Austenitic Stainless Steel Vessels
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001402
EISBN: 978-1-62708-220-4
...- and transgranular cracking. It is probable that the heating associated with the repair welds made from time to time also contributed to the trouble. The transgranular cracks, however, were indicative of stress-corrosion cracking. Chemical processing equipment Repair welding Storage vessels Vessels Weld...
Abstract
Weld-decay and stress-corrosion cracking developed in several similar all-welded vessels fabricated from austenitic stainless steel. During a periodic examination cracks were revealed at the external surface of one of the vessels. External patch welds had been applied at these and several other corresponding locations. Cracks visible on the external surface developed from the inside in a region close to the toe of the internal fillet weld to the deflector plate, and another deep crack associated with a weld cavity is visible slightly to the right of the main fissure. Microscopic examination revealed that precipitation of carbides at the grain boundaries had taken place in the vicinity of the cracks, but that the paths of the cracks were not wholly intergranular. Conditions present in the vicinity of the internal fillet weld must have been such as to favor both inter- and transgranular cracking. It is probable that the heating associated with the repair welds made from time to time also contributed to the trouble. The transgranular cracks, however, were indicative of stress-corrosion cracking.
Book Chapter
Failure of a Reformer Tube Weld by Cracking
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001280
EISBN: 978-1-62708-215-0
... by internal carburization. Quality control of welding procedures and filler metal was recommended. Chemical processing equipment Chemical processing industry Chemical reactors Crack propagation Furnaces Heat-resistant steels Tubing Weld defects Welded joints HK-40 UNS J94204 Joining-related...
Abstract
An HK-40 alloy tubing weld in a reformer furnace of a petrochemical plant failed by leaking after a shorter time than that predicted by design specifications. Leaking occurred because of cracks that passed through the thickness of the weldment. Analysis of the cracked tubing indicated that the sulfur and phosphorus contents of the weld metal were higher than specified, the thickness was narrower at the weld, and the mechanical resistance of the weld metal was lower than specified. Cracking initiated at the weld root by coalescence of creep cavities. Propagation and expansion was aided by internal carburization. Quality control of welding procedures and filler metal was recommended.
Book Chapter
Dezincification of a Brass Elbow in a Steam Heating Coil
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001410
EISBN: 978-1-62708-220-4
.... It is believed that, in the initial stages, solution of the copper-zinc alloy takes place, this being followed by a secondary reaction resulting in the elector-chemical redeposition of the copper. The net result of the process is that sound metal is gradually replaced by a brittle, porous deposit of copper...
Abstract
A brass elbow that formed one termination of a steam heating coil failed adjacent to the brazed connection after ten years of service. Chemical analysis showed that the elbow was made from a 60-40 CuZn brass containing 3% lead and 1% tin, a typical alloy used for the manufacture of components by the hot stamping process. Microscopic examination indicated failure from dezincification. The fact that the screwed end was not affected indicated that the trouble was not caused by the condensate, which flowed through the elbow, but originated from the water heated in the vessel. The helical mode of the cracking was probably due to the torsional stresses which would be imposed on the elbow by thermally induced movements of the coil in service.
Book Chapter
Failure of a Weld Seam in a Heat Exchanger of an Ammonia Synthesis Plant
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001161
EISBN: 978-1-62708-220-4
... to be completely martensitic. Thus, the failure was due to hardening of the base material during welding, and recommendation was made to temper or anneal the welded regions to reduce the effects of hydrogen under pressure. Ammonia Chemical processing equipment Heat exchangers Post heating Welded joints...
Abstract
A heat exchanger failed five years after going into service in an ammonia synthesis plant. Its container, made of Cr-Mo alloy steel (Material No. 1.7362), operated in an environment that did not exceed 400 deg C or 600 atm of hydrogen partial pressure. X-ray examination revealed a fissure in one of the welded seams, which according to microscopic examination, originated in the base material of the container. Higher magnification revealed a narrow zone adjacent to the weld seam permeated with intergranular cracks, the result of hydrogen attack. It also showed the structure to be completely martensitic. Thus, the failure was due to hardening of the base material during welding, and recommendation was made to temper or anneal the welded regions to reduce the effects of hydrogen under pressure.
Book Chapter
Examination of Steel Specimens from an Ammonia Synthesis Installation
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001172
EISBN: 978-1-62708-220-4
.... Ammonia Chemical processing equipment Decarburization Surface defects Nickel steel St 55.25 Hydrogen damage and embrittlement Unalloyed steels and the pure nickel steels frequently used in the past for highly stressed forgings are attacked by hydrogen under high pressure. The attack causes...
Abstract
Unalloyed steels and the pure nickel steels frequently used in the past can sustain significant damage from hydrogen attack in ammoniacal environments. The attack causes decarburization that leads to a loosening of the structure due to the precipitation of methane along grain boundaries. It occurs between 200 and 300 deg C, depending on hydrogen pressure. Parts of an apparatus that operate in these types of environments must be checked constantly if they are not made from hydrogen-resistant steel. The results of two such examinations serve to illustrate the challenges.
Book Chapter
Stress-Corrosion Cracking of Copper Alloy Tube Sheet
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091694
EISBN: 978-1-62708-220-4
... because of unrelated tube failures. Sanitary (chlorinated) well water was generally used in the system, although filtered process make-up water (river water) containing ammonia was occasionally used. Investigation (visual inspection, chemical analysis, mercurous nitrate testing, unetched 5X micrographs...
Abstract
Tube sheets (found to be copper alloy C46400, or naval brass, and 5 cm (2 in.) thick) of an air compressor aftercooler were found to be cracked and leaking approximately 12 to 14 months after they had been retubed. Most of the tube sheets had been retubed several times previously because of unrelated tube failures. Sanitary (chlorinated) well water was generally used in the system, although filtered process make-up water (river water) containing ammonia was occasionally used. Investigation (visual inspection, chemical analysis, mercurous nitrate testing, unetched 5X micrographs, and 250X micrographs etched in 10% ammonium persulfate solution) supported the conclusion that the tube sheets failed by SCC as a result of the combined action of internal stresses and a corrosive environment. The internal stresses had been induced by retubing operations, and the environment had become corrosive when ammonia was introduced into the system by the occasional use of process make-up water. Recommendations included making a standard procedure to stress relieve tube sheets before each retubing operation. The stress relieving should be done by heating at 275 deg C (525 deg F) for 30 min and slowly cooling for 3 h to room temperature.
Book Chapter
Stress-Corrosion Cracking of Type 316 Stainless Steel Piping
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091617
EISBN: 978-1-62708-220-4
.... Recommendations included eliminating the chlorides from the system, maintaining the temperature of the outlet stream above the dewpoint at all times, or that replacing the type 316 stainless steel with an alloy such as Incoloy 800 that is more resistant to chloride attack. Ammonia Chemical processing...
Abstract
A 680,000 kg (750 ton) per day ammonia unit was shut down following a fire near the outlet of the waste heat exchanger. The fire had resulted from leakage of ammonia from the type 316 stainless steel outlet piping. The outlet piping immediately downstream from the waste heat exchanger consisted of a flange made from a casting, and a reducing cone, a short length of pipe, and a 90 deg elbow, all made of 13 mm thick plate. A liner wrapped with insulation was welded to the smaller end of the reducing cone. All of the piping up to the flange was wrapped with insulation. Investigation (visual inspection, 10x unetched images, liquid-penetrant inspection, and chemical analysis of the insulation) supported the conclusion that the failure occurred in the area of the flange-to-cone weld by SCC as the result of aqueous chlorides leached from the insulation around the liner by condensate. Recommendations included eliminating the chlorides from the system, maintaining the temperature of the outlet stream above the dewpoint at all times, or that replacing the type 316 stainless steel with an alloy such as Incoloy 800 that is more resistant to chloride attack.
Book Chapter
Investigation of Distribution Manifolds from the Cooling Unit of an Ammonia Synthesis Plant
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001174
EISBN: 978-1-62708-220-4
... the affected area yielded low specific impact energy values. These are the significant characteristics of hydrogen attack. The attack penetrated to a depth of 13 to 16 mm. It was recommended that the manifolds be made of hydrogen-resistant steel instead of the unalloyed steel used. Ammonia Chemical...
Abstract
A cooler of an ammonia synthesis plant was destroyed after three years of service due to the rupture of a distribution manifold. Synthesis gas under high pressure and at about 300 deg C, consisting of 10% NH3 and unconverted gas of 25% N2 and 75% H2 content, was water-cooled externally to room temperature in this unit. The fracture had the typical flat-gray fibrous structure of a material destroyed by hydrogen. Specimens for the metallographic investigation showed that the structure appeared to have been loosened by intergranular separations. DVM notched impact specimens from the affected area yielded low specific impact energy values. These are the significant characteristics of hydrogen attack. The attack penetrated to a depth of 13 to 16 mm. It was recommended that the manifolds be made of hydrogen-resistant steel instead of the unalloyed steel used.
Book Chapter
Stress-Corrosion Cracking of a Teflon-Lined Steel Pipe in Sulfuric Acid Service
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001066
EISBN: 978-1-62708-214-3
... impermeable to the diffusion of ionic species was recommended. Chemical processing equipment Nitric acid, environment Spools, corrosion Sulfuric acid, environment Teflon-lined carbon steel Intergranular corrosion Stress-corrosion cracking Background A flanged 100 mm (4 in.) diam low-carbon...
Abstract
A flanged 100 mm (4 in.) diam low-carbon steel spool piece lined with Teflon was removed from a sulfuric acid denitrification system after cracks were observed in the painted coating. Visual and microstructural examination along with SEM fractography revealed scaled iron oxides on all opened crack surfaces. The surfaces had a faceted morphology, indicating intergranular fracture. Cracks originated at the interface between the tube and the Teflon liner Corrosion products were found caked into the intergranular region between the liner and the spool. The portion of the liner that had been exposed to the process stream was discolored. Failure of the spool was attributed to stress-corrosion cracking promoted by the presence of nitrates. Nitric acid contaminant in the sulfuric acid stream had diffused through the liner and accumulated in the annular space. Use of a liner that is more impermeable to the diffusion of ionic species was recommended.
Book Chapter
Failure of Plasticized Poly(vinyl chloride) Tubing
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0090439
EISBN: 978-1-62708-220-4
... with the specified material and, as a result, was not as thermally stable as the reference material. Chemical composition Feedstock Molding resins Plasticizers Thermal analysis Tubing (nonmetal) Tubings Polyvinyl chloride (Other, general, or unspecified) processing-related failures A section...
Abstract
A section of clear polymeric tubing failed while in service. The failed sample had been used in a chemical transport application. The tubing had also been exposed to periods of elevated temperature as part of the operation. The tubing was specified to be a polyvinyl chloride (PVC) resin plasticized with trioctyl trimellitate. Investigation included visual inspection, micro-FTIR in the ATR mode, and thermogravimetric analysis. The spectrum on the failed tubing exhibited absorption bands indicative of a PVC resin containing an adipate-based plasticizer. Thermograms of the failed pieces and a reference sample of tubing that performed well showed that the reference material contained a trimellitate-based plasticizer and that the failed material contained an adipate-based material. The conclusion was that the failed tubing had been produced from a formulation that did not comply with the specified material and, as a result, was not as thermally stable as the reference material.
1