1-20 of 37

Search Results for ceramic mold process

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006864
EISBN: 978-1-62708-395-9
... guidelines, and special processes. It also covers the functions of the extruder, webline handling, mixing and compounding operations, and process troubleshooting. Thermoforming and mold design are covered. Various other technologies for polymer processing covered in this article are blow molding, rotational...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
... specific to the metal group and progress from melting to solidification, casting processing, and finally how the removal of the mold material can affect performance. aluminum casting defects castings copper ductile iron failure analysis gray iron melting solidification steel Introduction...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... interfere with the ability of the foundry to use the best techniques to produce reliable castings. Defect-free castings can be produced at a price. The multitude of process variables, such as molding mediums, binder, gating and risering, melting and ladle practice, pouring technique, and heat treatment...
Book Chapter

By Peter Martin
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006925
EISBN: 978-1-62708-395-9
... crystalline fraction with small domains. Crystallinity is also affected by the temperature gradient in processing. A high mold temperature reduces temperature gradients and the amount of crystallization, whereas a low mold temperature increases the crystallization rate. A high melt pressure in molding can...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.9781627083959
EISBN: 978-1-62708-395-9
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006915
EISBN: 978-1-62708-395-9
... with various regions of the viscosity curve. It discusses the concept of shear sensitivity, the nature of viscoelastic properties, and the electrical, chemical, and optical properties of different plastics. It also reviews plastic processing operations, including extrusion, injection molding, and thermoforming...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003525
EISBN: 978-1-62708-180-1
... and is calculated as the area under the melting endotherm. The level of crystallinity is determined by comparing the actual as-molded heat of fusion with that of a 100% crystalline sample. The level of crystallinity that a material has reached during the molding process can be practically assessed by comparing...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006933
EISBN: 978-1-62708-395-9
... distribution, crystallinity, tacticity, molecular orientation, and fusion. These characteristics have a significant impact on the properties of the molded article. Additionally, plastic resins are formulated with additives such as reinforcing fillers, plasticizers, colorants, antidegradants, and process aids...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006870
EISBN: 978-1-62708-395-9
... or to the rubber curing process occurring to an excessive degree as the rubber contacts the presumably hot mold. If the mold temperature is too hot during filling, the rubber becomes more viscous as it begins to cure and, hence, more resistant to uniform flow, which can result in voids. These voids will serve...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006913
EISBN: 978-1-62708-395-9
... (a) Electrode type Electrode description (b) (c) Insulating materials 1 Opposing cylinders 50 mm (2 in.) in diameter, 25 mm (1 in.) thick with edges rounded to 6.4 mm (0.25 in.) radius Flat sheets of paper, films, fabrics, rubber, molded plastics, laminates, boards, glass, mica, and ceramic 2...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003532
EISBN: 978-1-62708-180-1
... the mold at the maximum molding temperature. However, cooling thermosetting resins under pressure to near-ambient temperature before ejection significantly reduces shrinkage gap formation. Never rapidly cool a thermosetting resin mount with water after hot ejection from the molding temperature. This causes...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006765
EISBN: 978-1-62708-295-2
...), while mounts made of thermosetting materials may be ejected from the mold at the maximum molding temperature. However, cooling thermosetting resins under pressure to near-ambient temperature before ejection significantly reduces shrinkage gap formation. Never rapidly cool a thermosetting resin mount...
Book Chapter

By Brett A. Miller
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006800
EISBN: 978-1-62708-329-4
... whether the part will be made from metal, plastic, ceramic, or composite. Level II: Determine whether metal parts will be produced by a deformation process (wrought) or a casting process; for plastics, determine whether they will be thermoplastic or thermosetting polymers. Level III: Narrow...
Book Chapter

By Brett A. Miller
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003501
EISBN: 978-1-62708-180-1
... will be made from metal, plastic, ceramic, or composite. Level II: Determine whether metal parts will be produced by a deformation process (wrought) or a casting process; for plastics, determine whether they will be thermoplastic or thermosetting polymers. Level III: Narrow options to a broad...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006924
EISBN: 978-1-62708-395-9
... temperature, resulting in a viscous liquid that can be formed into useful shapes by means of heat and pressure. Examples of thermoplastic processing include injection molding, extrusion, blow molding, and thermoforming. Upon cooling, the polymer either crystallizes or vitrifies to a glassy polymer (i.e...
Book Chapter

By Giovanni Straffelini
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006789
EISBN: 978-1-62708-295-2
... damage of the worn products after the tribological process. Then, the article describes some examples of wear processes, considering possible transitions and/or interactions of the mechanism of fretting wear, rolling-sliding wear, abrasive wear, and solid-particle erosion wear. The role of tribological...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003560
EISBN: 978-1-62708-180-1
... be expressed through the following parameters ( Ref 7 , 9 ): the probability of wear debris formation, the proportion of plowing and cutting processes, the abrasive particle shape and size, the applied stress, and the hardness of the wear surface. For brittle materials (e.g., ceramics), a transition from...
Book Chapter

Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006790
EISBN: 978-1-62708-295-2
... processes, the abrasive particle shape and size, the applied stress, and the hardness of the wear surface. For brittle materials (e.g., ceramics), a transition from a purely cutting mechanism to one that also involves fragmentation occurs when the nature of contact changes from elastic-plastic...
Book Chapter

By Maksim Antonov
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006795
EISBN: 978-1-62708-295-2
... 23. Seetharamu S. , Sampathkumaran P. , and Kumar R.K. , Erosion Resistance of Permanent Moulded High Chromium Iron , Wear , Vol 186–187 , 1995 , p 159 – 167 10.1016/0043-1648(95)07173-3 24. Dimond C.R. , The Specification and Installation of Alumina Ceramics...