Skip Nav Destination
Close Modal
Search Results for
cavitation wear
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 66
Search Results for cavitation wear
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2002
Fig. 2 Wear surface by cavitation of copper-base alloy in a lubricated gearbox. Courtesy of CETIM
More
Image
Published: 01 January 2002
Image
Published: 01 January 2002
Image
Published: 01 January 2002
Image
Published: 01 January 2002
Fig. 9 Wear on suction surface of centrifugal pump impeller by cavitation and solid particle erosion. Courtesy of CETIM
More
Image
Published: 01 January 2002
Fig. 10 Wear on pressure surface of centrifugal pump impeller by cavitation and solid particle erosion. Courtesy of CETIM
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003560
EISBN: 978-1-62708-180-1
... surfaces. Adhesive wear, the type of wear that occurs between two mutually soluble materials, is also discussed, as is erosive wear, liquid impingement, and cavitation wear. The article also presents a procedure for failure analysis and provides a number of detailed examples, including jaw-type rock...
Abstract
Wear, a form of surface deterioration, is a factor in a majority of component failures. This article is primarily concerned with abrasive wear mechanisms such as plastic deformation, cutting, and fragmentation which, at their core, stem from a difference in hardness between contacting surfaces. Adhesive wear, the type of wear that occurs between two mutually soluble materials, is also discussed, as is erosive wear, liquid impingement, and cavitation wear. The article also presents a procedure for failure analysis and provides a number of detailed examples, including jaw-type rock crusher wear, electronic circuit board drill wear, grinding plate wear failure analysis, impact wear of disk cutters, and identification of abrasive wear modes in martensitic steels.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047441
EISBN: 978-1-62708-234-1
... Erosion - corrosion Cavitation wear A fan support casting failed unexpectedly while running at 1800 rpm in pulp at 65 ° (150 °F). The leading edge of the blade exhibited deep spongy holes leading to reduced section and finally to fracture of the part when the remaining section size was insufficient...
Abstract
A fan support casting failed unexpectedly while running at 1800 rpm in pulp at 65 deg C (150 deg F). The leading edge of the blade exhibited deep spongy holes leading to reduced section and finally to fracture of the part when the remaining section size was insufficient to support the load. Analysis showed the support casting to be a standard 8620 type composition with a hardness of 311 HRB. The design of the casting was not streamlined. There were several square corners present where great pressure differences could be generated. This was a case of erosion-corrosion with the classic spongy appearance of cavitation. Two changes were proposed: streamlining the part to avoid abrupt changes in fluid flow; and a change in alloy to a more corrosion-resistant material (304 or preferably 316) to increase the tenacity of protective films.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046422
EISBN: 978-1-62708-234-1
... as erosion-producing conditions. Dynamometers Stator blades CA-6NM UNS J91540 Erosive wear Corrosive wear Cavitation wear Figure 1 shows severely eroded stator vanes of a hydraulic dynamometer for a steam-turbine test facility. The stator was cast from a copper-manganese-aluminum alloy...
Abstract
Stator vanes (cast from a Cu-Mn-Al alloy) in a hydraulic dynamometer used in a steam-turbine test facility were severely eroded. The dynamometer was designed to absorb up to 51 MW (69,000 hp) at 3670 rpm, and constituted an extrapolation of previous design practices and experience. Its stator was subject to severe erosion after relatively short operating times and initially required replacement after each test program. Although up to 60 cu cm (3.7 cu in.) of material was being lost from each vane, it only reduced the power-absorption capacity by a small amount. Analysis supported the conclusion that the damage was due to liquid erosion, but it could not be firmly established whether it was caused by cavitation or by liquid impact. Recommendations included making a material substitution (to Mo-13Cr-4Ni stainless steel) and doing a redesign to reduce susceptibility to erosion as well as erosion-producing conditions.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003569
EISBN: 978-1-62708-180-1
... with a discussion on correlations between laboratory results and service. bearings brittle materials cavitation erosion cavitation resistance cavitation test centrifugal pumps ductile materials gearbox CAVITATION EROSION is a type of wear in hydraulic turbines, on pump impellers, on ship...
Abstract
This article considers two mechanisms of cavitation failure: those for ductile materials and those for brittle materials. It examines the different stages of cavitation erosion. The article explains various cavitation failures including cavitation in bearings, centrifugal pumps, and gearboxes. It provides information on the cavitation resistance of materials and other prevention parameters. The article describes two American Society for Testing and Materials (ASTM) standards for the evaluation of erosion and cavitation, namely, ASTM Standard G 32 and ASTM Standard G 73. It concludes with a discussion on correlations between laboratory results and service.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001236
EISBN: 978-1-62708-218-1
... on the cylinder surface and which is not so easily scoured off during vibration. The effect of the imploding vacuum bubbles is reduced by the oil film which can renew itself from the emulsion. Diesel engines Engine cylinders Pitting (wear) Gray iron Cavitation wear The cylinder lining under...
Abstract
A cast iron cylinder liner from a diesel engine suffered localized damage on the cooling water side leading to serration of the edges and heavy pitting. This heavy damage was cavitation damage, frequently observed in diesel motor cylinders. To combat such damage the following measures are recommended in the specialist literature: reduction in piston play; reduction in the amplitude by thicker-walled linings; hard chromizing of the cooling water side; and, addition of a protective oil to the cooling water. The effect of the protective oil is presumably based on a film of oil which forms on the cylinder surface and which is not so easily scoured off during vibration. The effect of the imploding vacuum bubbles is reduced by the oil film which can renew itself from the emulsion.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046414
EISBN: 978-1-62708-234-1
... to the piping system and excluding air from the pump inlet. Impellers Pumps Bronze Cavitation wear Figure 1(a) shows the impeller from one of two water pumps that were taken out of service because of greatly reduced output. Both impellers showed considerable material loss over all the interior...
Abstract
Two water pumps were taken out of service because of reduced output. Visual inspection revealed considerable material loss in both impellers, which were 25.4 cm (10 in.) in diam x 1.3 cm (0.5 in.) wide and made from a cast bronze alloy. Several similar water pumps operating under nearly identical conditions, drawing water from an open tank through a standpipe, had no observable failures. Etched micrographs 100x of samples taken from the impellers showed clean, pockmarked, severely eroded surfaces, characteristic of cavitation damage. Investigation also revealed that considerable quantities of air were being drawn into the system when water in the supply tank dropped below a certain level. It was concluded that cavitation erosion (due to the uptake of air) caused metal removal and microstructural damage in the impellers. Recommendations included adding a water-level control to the piping system and excluding air from the pump inlet.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046418
EISBN: 978-1-62708-234-1
... situation, consideration should also be given to raising the pressure in the coolant in order to suppress the formation of cavitation bubbles. Cavitation erosion Combustion chambers Pitting (wear) 6061-T6 UNS A96061 Heat treating-related failures Erosive wear Cavitation wear Equipment...
Abstract
Equipment in which an assembly of in-line cylindrical components rotated in water at 1040 rpm displayed excessive vibration after less than one hour of operation. The malfunction was traced to an aluminum alloy 6061-T6 combustion chamber that was part of the rotating assembly. Analysis (visual inspection, 100x/500x/800x micrographic examination, spectrographic analysis, and hardness testing) supported the conclusions that, as a result of improper heat treatment, the combustion-chamber material was too soft for successful use in this application. Misalignment of the combustion chamber and one or both of the mating parts resulted in eccentric rotation and the excessive vibration that caused malfunction of the assembly. Irregularities in the housing around the combustion chamber and temperature variation relating to the combustion pattern in the chamber were considered to be possible contributing factors to localization of the cavitation erosion. Recommendations included adopting inspection procedures to ensure that the specified properties of aluminum alloy 6061-T6 were obtained and that the combustion chamber and adjacent components were aligned within specified tolerances. In a similar situation, consideration should also be given to raising the pressure in the coolant in order to suppress the formation of cavitation bubbles.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001202
EISBN: 978-1-62708-234-1
.... Alloy cast iron Impellers Rotary pumps GGL NiCuCr 15 6 2 Cavitation wear The two damaged impellers made of austenitic cast iron came from a rotary pump used for pumping brine mixed with drifting sand. On one of the impellers, pieces were broken out of the back wall in four places...
Abstract
Two damaged impellers made of austenitic cast iron came from a rotary pump used for pumping brine mixed with drifting sand. On one of the impellers, pieces were broken out of the back wall in four places at the junction to the blades. The fracture edges followed the shape of the blade. Numerous cavitation pits were seen on the inner side of the front wall visible through the breaks in the back wall. The back wall of the as yet intact second impeller which did not show such deep cavitation pits was cracked in places along the line of the blades. The microstructure consisted of lamellar graphite and carbides in an austenitic matrix and was considered normal for the specified material GGL Ni-Cu-Cr 15 6 2. It was concluded that the cause of the damage was porosity at the junction between back wall and blades arising during the casting process. Cavitation did not contribute to fracture but also could have led to damage in the long term in the case of a sound casting. It is therefore advisable in the manufacture of new impellers to take care not only to avoid porosity but also to use alloy GGL Ni-Cu-Cr 15 6 3, which has a higher chromium content and is more resistant to cavitation.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001779
EISBN: 978-1-62708-241-9
... the dominant failure mechanisms and that the materials and processes used to make the pumps were largely unsuited for the application. pump casing cavitation wear erosion steel shrinkage pits and voids scanning electron microscopy cavitation resistance C30 (low-carbon steel alloy) UNS G10300...
Abstract
Material samples collected from failed booster pumps were analyzed to determine the cause of failure and assess the adequacy of the materials used in the design. The pumps had been in service at a power plant, transporting feedwater from a deaerator to a main turbine boiler. Samples from critical areas of the pump were examined using optical and scanning electron microscopy, electrochemical analysis, and tensile testing. Based on microstructure and morphology, estimated corrosion rates, and particle concentrations in the feedwater, it was concluded that cavitation and erosion were the dominant failure mechanisms and that the materials and processes used to make the pumps were largely unsuited for the application.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001486
EISBN: 978-1-62708-234-1
... made to reduce or prevent cavitation damage by the application of cathodic protection, and this has been found to be effective in certain instances of trouble on propellers. Diesel engines Cast iron Cavitation wear The rapid wastage, leading to ultimate failure, of ship propellers, pump...
Abstract
Cavitation damage of diesel engine cylinder liners is due to vibration of the cylinder wall, initiated by slap of the piston under the combined forces of inertia and firing pressure as it passes top dead center. The occurrence on the anti-thrust side may possibly result from bouncing of the piston. The exact mechanism of cavitation damage is not entirely clear. Two schools of thought have developed, one supporting an essentially erosive, and the other an essentially corrosive, mechanism. Measures to prevent, or reduce, cavitation damage should be considered firstly from the aspect of design, attention being given to methods of reducing the amplitude of the liner vibration. Attempts have been made to reduce the severity of attack by attention to the environment. Inhibitors, such as chromates, benzoate/nitrite mixtures, and emulsified oils, have been tried with varying success. Attempts have been made to reduce or prevent cavitation damage by the application of cathodic protection, and this has been found to be effective in certain instances of trouble on propellers.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001604
EISBN: 978-1-62708-234-1
... vapor environment. However, failure analysis showed that cavitation erosion was the responsible failure mechanism, not corrosion as might be expected. Cavitation erosion Hardness Microstructure SO2 316 UNS S31600 1006 UNS G10060 Erosive wear Erosion - corrosion Cavitation wear...
Abstract
Critical heat exchanger components are usually manufactured from durable steels, such as stainless steel, which exhibit good strength and corrosion resistance. Failure of a heat exchanger occurred due to specification of a plain carbon steel that did not survive service in the SO2 vapor environment. However, failure analysis showed that cavitation erosion was the responsible failure mechanism, not corrosion as might be expected.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
... manager. References References 1. Hansson C.M. and Hansson I.L.H. , Cavitation Erosion , Friction, Lubrication, and Wear Technology , Vol 18 , ASM Handbook , ASM International , 1992 , p 214 – 220 2. Heymann F.J. , Liquid Impingement Erosion , Friction...
Abstract
Erosion of solid surfaces can be brought about solely by liquids in two ways: from damage induced by formation and subsequent collapse of voids or cavities within the liquid, and from high-velocity impacts between a solid surface and liquid droplets. The former process is called cavitation erosion and the latter is liquid-droplet erosion. This article emphasizes on manifestations of damage and ways to minimize or repair these types of liquid impact damage, with illustrations.
Image
Published: 15 January 2021
erosion tester. Source: Ref 28 . Reproduced with permission from “Standard Test Method for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets,” G 76, Corrosion of Metals; Wear and Erosion , Vol 03.02, Annual Book of ASTM Standards , ASTM International, 2019. (d) Cavitation-corrosion
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003568
EISBN: 978-1-62708-180-1
... materials with the aid of models and equations. It presents three examples of erosive wear failures, namely, abrasive erosion, erosion-corrosion, and cavitation erosion. abrasive erosion brittle materials cavitation erosion ductile materials erosion erosion corrosion EROSION...
Abstract
Erosion occurs as the result of a number of different mechanisms, depending on the composition, size, and shape of the eroding particles; their velocity and angle of impact; and the composition of the surface being eroded. This article describes the erosion of ductile and brittle materials with the aid of models and equations. It presents three examples of erosive wear failures, namely, abrasive erosion, erosion-corrosion, and cavitation erosion.
1