Skip Nav Destination
Close Modal
Search Results for
castings
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 608 Search Results for
castings
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047297
EISBN: 978-1-62708-235-8
... Abstract Door-closer cylinder castings manufactured of class 30 gray iron were breaking during machining. The manufacturing source reported that a random sampling of castings from this lot had hardnesses from 180 to 210 HRB. Based on the color of the components, heat treatment of these castings...
Abstract
Door-closer cylinder castings manufactured of class 30 gray iron were breaking during machining. The manufacturing source reported that a random sampling of castings from this lot had hardnesses from 180 to 210 HRB. Based on the color of the components, heat treatment of these castings was suspected. Metallurgical examination on two representative castings supported the conclusions that the cracks in these gray iron door closers that were present either before or during the heat treatment were attributed to a substandard microstructure of the wrong type of graphite combined with excessive ferrite. This anomalous structure is caused by shortcomings in the foundry practice of chemical composition, solidification, and inoculation control. Judging from the microstructure, the strength of the material was lower than desired for class 30 gray iron, and the suspected heat treatment further reduced the strength. Recommendations included that the chemistry and inoculation should be controlled to produce type A graphite structure. The chemistry control should aim for a carbon equivalent close to 4.3% to achieve adequate fluidity for thin sections and to alleviate gas defects.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047392
EISBN: 978-1-62708-221-1
... Abstract A roadarm for a tracked vehicle failed during preproduction vehicle testing. The arm was a weldment of two cored low-alloy steel sand castings specified to ASTM A 148, grade 120–95. A maximum carbon content of 0.32% was specified. The welding procedure called for degreasing and gas...
Abstract
A roadarm for a tracked vehicle failed during preproduction vehicle testing. The arm was a weldment of two cored low-alloy steel sand castings specified to ASTM A 148, grade 120–95. A maximum carbon content of 0.32% was specified. The welding procedure called for degreasing and gas metal arc welding; neither preheating nor postheating was specified. The filler metal was E70S-6 continuous consumable wire with a copper coating to protect it from atmospheric oxidation while on the reel. Analysis of the two castings revealed that the carbon content was higher than specified, ranging from 0.40 to 0.44%. The fracture occurred in the HAZ , where quenching by the surrounding metal had produced a hardness of 55 HRC. Some roadarms of similar carbon content and welded by the same procedure had not failed because they had been tempered during a hot-straightening operation. Brittle fracture of the roadarm was caused by a combination of too high a carbon equivalent in the castings and the lack of preheating and postheating during the welding procedure. A pre-heat and tempering after welding were added to the welding procedure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001640
EISBN: 978-1-62708-235-8
... Abstract A new supplier for aluminum die castings was being evaluated, and the castings failed to meet the durability test requirements. Specifically, the fatigue life of the castings was low. Initial inspection of the fatigue fracture surfaces revealed large-scale porosity visible to the naked...
Abstract
A new supplier for aluminum die castings was being evaluated, and the castings failed to meet the durability test requirements. Specifically, the fatigue life of the castings was low. Initial inspection of the fatigue fracture surfaces revealed large-scale porosity visible to the naked eye. New castings with reduced porosity also failed the durability tests. The fatigue fracture surfaces of additional casting fragments were very rough and contained multiple ratchet marks along the inner fillet. These observations indicated the fatigue process was heavily influenced by the presence of surface imperfections. Improving the surface finish or choosing a stronger alloy, were more likely to improve part durability than reducing the porosity.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001641
EISBN: 978-1-62708-235-8
... Abstract Near-surface porosity in zinc die castings that were subsequently plated with copper, nickel, and bright chromium was causing blemishes in the plating. Identifying die casting turbulence and hot spots were keys to process modifications that subsequently allowed porosity to be greatly...
Abstract
Near-surface porosity in zinc die castings that were subsequently plated with copper, nickel, and bright chromium was causing blemishes in the plating. Identifying die casting turbulence and hot spots were keys to process modifications that subsequently allowed porosity to be greatly minimized.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001375
EISBN: 978-1-62708-215-0
... Abstract Three sprinkler system dry pipe valve castings (class 30 gray iron), two that had failed in service and one that had been rejected during machining because of porosity, were submitted for examination. The two failures consisted of cracks in a seating face. All three were from the same...
Abstract
Three sprinkler system dry pipe valve castings (class 30 gray iron), two that had failed in service and one that had been rejected during machining because of porosity, were submitted for examination. The two failures consisted of cracks in a seating face. All three were from the same heat. Visual examination showed that the casting had cracked through a thin area in the casting sidewall. Evidence of a sharply machined corner at the fracture site was also discovered. Tensile testing and metallographic analysis revealed no metallurgical cause for the failure. It was recommended that the manufacturer work with the foundry to evaluate the criticality of core placement and to eliminate the undesired thin section.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
... Abstract The information provided in this article is intended for those individuals who want to determine why a casting component failed to perform its intended purpose. It is also intended to provide insights for potential casting applications so that the likelihood of failure to perform...
Abstract
The information provided in this article is intended for those individuals who want to determine why a casting component failed to perform its intended purpose. It is also intended to provide insights for potential casting applications so that the likelihood of failure to perform the intended function is decreased. The article addresses factors that may cause failures in castings for each metal type, starting with gray iron and progressing to ductile iron, steel, aluminum, and copper-base alloys. It describes the general root causes of failure attributed to the casting material, production method, and/or design. The article also addresses conditions related to the casting process but not specific to any metal group, including misruns, pour shorts, broken cores, and foundry expertise. The discussion in each casting metal group includes factors concerning defects that can occur specific to the metal group and progress from melting to solidification, casting processing, and finally how the removal of the mold material can affect performance.
Image
in Brittle Fracture of a Roadarm Weldment of Two Steel Castings Because of Excessive Carbon-Equivalent Content
> ASM Failure Analysis Case Histories: Construction, Mining, and Agricultural Equipment
Published: 01 June 2019
Fig. 1 Section through weld in a roadarm (a weldment of low-alloy steel castings). The roadarm fractured in the HAZ because of high carbon-equivalent content. Fracture surface is at arrow. 0.8×
More
Image
in Metal Waves or Laking on Zinc-Based Diecastings
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 1 Castings of name-plate holder showing the runner and overflow system, the outline of laked areas and the sections along which surface profiles were determined.
More
Image
Published: 01 January 2002
Fig. 32 Redesign of castings to provide progressive solidification through the use of tapered walls. (a) Elbow design. (b) Valve fitting design. Source: Ref 31
More
Image
Published: 30 August 2021
Fig. 12 Redesign of castings to provide progressive solidification through the use of tapered walls. (a) Elbow design. (b) Valve fitting design. Source: Ref 15
More
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
...International classification of common casting defects Table 1 International classification of common casting defects No. Description Common name Sketch Metallic Projections A 100: Metallic projections in the form of fins or flash A 110: Metallic projections...
Abstract
This article focuses on the general root causes of failure attributed to the casting process, casting material, and design with examples. The casting processes discussed include gravity die casting, pressure die casting, semisolid casting, squeeze casting, and centrifugal casting. Cast iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds. It presents the international classification of common casting defects in a tabular form.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0090974
EISBN: 978-1-62708-235-8
... Abstract A cast steel bracket manufactured in accordance with ASTM A 148 grade 135/125 steel failed in railroad maintenance service. Ancillary property requirements included a 285 to 331 HB hardness range and minimum impact energy of 27 J (20 ft·lbf) at -40 deg C (-40 deg F). The conditions...
Abstract
A cast steel bracket manufactured in accordance with ASTM A 148 grade 135/125 steel failed in railroad maintenance service. Ancillary property requirements included a 285 to 331 HB hardness range and minimum impact energy of 27 J (20 ft·lbf) at -40 deg C (-40 deg F). The conditions at the time of failure were characterized as relatively cold. Investigation (visual inspection, chemical analysis, and unetched 119x and 2% nital etched 119x SEM images) supported the conclusion that the bracket failed through brittle overload fracture due to a number of synergistic factors. The quenched-and-tempered microstructure contained solidification shrinkage, inherently poor ductility, and type II Mn-S inclusions that are known to reduce ductility. The macro and microscale fracture features confirmed that the casting was likely in low-temperature service at the time of failure. The composition and mechanical properties of the casting did not satisfy the design requirements. Recommendations included exerting better composition control, primarily with regard to melting, deoxidation, and nitrogen control. Better deoxidation practice was recommended to generate the more desirable Mn-S inclusion morphology, and reevaluation of the casting design was suggested to minimize shrinkage.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047474
EISBN: 978-1-62708-221-1
... Abstract A 10-cm (4-in.) chain link used in operating a large dragline bucket failed after several weeks in service. The link was made of cast low-alloy steel (similar to ASTM A487, class 10Q) that had been normalized, hardened, and tempered to give a yield strength of approximately 1034 MPa...
Abstract
A 10-cm (4-in.) chain link used in operating a large dragline bucket failed after several weeks in service. The link was made of cast low-alloy steel (similar to ASTM A487, class 10Q) that had been normalized, hardened, and tempered to give a yield strength of approximately 1034 MPa (150 ksi). A hydrogen flake approximately 5 cm (2 in.) in diam was observed at the center of the fracture surface. Beach marks indicative of fatigue encircled the hydrogen flake and covered nearly all of the remaining fracture surface. The failure of this linkways caused by an excessive hydrogen content. Two steps were taken to combat this type of failure. First, when service conditions did not require high hardness to combat wear, the links were produced of a steel having a yield strength of about 690 MPa (100 ksi) rather than 1034 M
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001522
EISBN: 978-1-62708-235-8
... Abstract In the EMD-2 Joint Directed Attack Munition (JDAM), the A357 aluminum alloy housing had been redesigned and cast via permanent mold casting, but did not meet the design strength requirements of the previous design. Mechanical tests on thick and thin sections of the forward housing...
Abstract
In the EMD-2 Joint Directed Attack Munition (JDAM), the A357 aluminum alloy housing had been redesigned and cast via permanent mold casting, but did not meet the design strength requirements of the previous design. Mechanical tests on thick and thin sections of the forward housing assembly revealed tensile properties well below the allowable design values. Radiology and CT evaluations revealed no casting defects. Optical microscopy revealed porosity uniformly distributed throughout the casting on the order of 0.1 mm pore diam. Scanning electron microscopy revealed elongated pores, which indicated turbulent filling of the mold. Spherical pores would have indicated the melt had been improperly degassed. Based on these findings, it was recommended that the manufacturer analyze and redesign the gating system to eliminate the turbulent flow problem during the permanent mold casting process.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001197
EISBN: 978-1-62708-235-8
... Abstract The front wall of a cast iron crankcase cracked at the transition from the comparatively minor wall thickness to the thick bosses for the drilling of the bolt holes. Metallographic examination showed the case was aggravated by the fact that the casting had a ferritic basic structure...
Abstract
The front wall of a cast iron crankcase cracked at the transition from the comparatively minor wall thickness to the thick bosses for the drilling of the bolt holes. Metallographic examination showed the case was aggravated by the fact that the casting had a ferritic basic structure and the graphite in part showed a granular formation, so that strength of the material was low. In a second crankcase with the same crack formation the structure in the thick-wailed part was better. But it also showed granular graphite in the ferritic matrix in the thin-walled part between the dendrites of the primary solid solution precipitated in the residual melt. A third crankcase had fractures in two places, first at the frontal end wall and second at the thinnest point between two bore holes. In all three cases casting stresses caused by unfavorable construction and rapid cooling were responsible for the crack formation. A fourth crankcase had cracked in the bore-hole of the frontal face. In this case the cause of the fracture was the low strength of a region that was caused by a bad microstructure further weakened by the bore hole.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047441
EISBN: 978-1-62708-234-1
... Abstract A fan support casting failed unexpectedly while running at 1800 rpm in pulp at 65 deg C (150 deg F). The leading edge of the blade exhibited deep spongy holes leading to reduced section and finally to fracture of the part when the remaining section size was insufficient to support...
Abstract
A fan support casting failed unexpectedly while running at 1800 rpm in pulp at 65 deg C (150 deg F). The leading edge of the blade exhibited deep spongy holes leading to reduced section and finally to fracture of the part when the remaining section size was insufficient to support the load. Analysis showed the support casting to be a standard 8620 type composition with a hardness of 311 HRB. The design of the casting was not streamlined. There were several square corners present where great pressure differences could be generated. This was a case of erosion-corrosion with the classic spongy appearance of cavitation. Two changes were proposed: streamlining the part to avoid abrupt changes in fluid flow; and a change in alloy to a more corrosion-resistant material (304 or preferably 316) to increase the tenacity of protective films.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0089572
EISBN: 978-1-62708-218-1
... Abstract Two sand-cast low-alloy steel equalizer beams (ASTM A 148, grade 105-85) designed to distribute the load to the axles of a highway truck broke after an unreported length of service. Normal service life would have been about 805,000 km (500,000 mi) of truck operation. Investigation...
Abstract
Two sand-cast low-alloy steel equalizer beams (ASTM A 148, grade 105-85) designed to distribute the load to the axles of a highway truck broke after an unreported length of service. Normal service life would have been about 805,000 km (500,000 mi) of truck operation. Investigation (visual inspection, chemical analysis, tensile testing, unetched 65x and 1% nital etched 65x magnification) supported the conclusions that the steel was too soft for the application – probably due to improper heat treatment. Fracture of the equalizer beams resulted from growth of mechanical cracks that were formed before the castings were heat treated. Recommendations included the following changes in processing: better gating and risering in the foundry to achieve sounder castings; better shakeout practice to avoid mechanical damage; better inspection to detect imperfections; and normalizing and tempering to achieve better mechanical properties.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001251
EISBN: 978-1-62708-235-8
... Abstract In a steel foundry, tensile and bend specimens of castings made in a 2-ton basic arc furnace showed, at irregular intervals, regions with coarse-grained fractures where the specimens broke prematurely, so that the specified strength and toughness values could not be reached. Several...
Abstract
In a steel foundry, tensile and bend specimens of castings made in a 2-ton basic arc furnace showed, at irregular intervals, regions with coarse-grained fractures where the specimens broke prematurely, so that the specified strength and toughness values could not be reached. Several cast tensile specimens and some forcibly-broken pieces of the flanges of armature yokes made of cast steel GS C 25 according to DIN 17 245 were investigated. Microscopic examination showed that the cause of damage was the superabundant use of aluminum as deoxidizer. According to recommendations, the aluminum addition was reduced by one-half. Since then, there have been no additional rejects due to insufficient tensile and bend values.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001252
EISBN: 978-1-62708-235-8
.... 5000 × Fig. 11 Electron diffraction pattern of precipitated particle. It has been known from previous experience that such precipitates lower the cold strength and toughness of steel castings and lead to a ripping open of the grain boundaries during mechanical stress application...
Abstract
An octagonal steel ingot weighing 13 tons made of manganese-molybdenum steel developed gaping cross-cracks on all eight sides in the forging press during initial pressure application. It was reported that the steel had been melted in a basic 12-ton arc furnace, oxygenated, furnished with 42 kg of 75% ferrosilicon and 12 kg aluminum additions, alloyed with 160 kg of 80% ferromanganese, and finally deoxidized in the ladle with 42 kg calcium silicon. For metallographic examination a plate approximately 100 mm thick was cut parallel to one of the eight planes. Platelet-like particles could be discerned on the conchoidal fracture planes with the SEM. The precipitates proved to be thin and partially transparent platelets of a hexagonal crystal lattice whose parameters resemble those of AIN. The precipitates were at least in part still undissolved in spite of the long holding period at high initial forging temperature. Another block melted under the same conditions and immediately after the defective one, was forged into a gear ring without any trouble. This ring was free of grain boundary precipitates, but it contained only 0.012 % AI and 0.0102 % N.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047479
EISBN: 978-1-62708-221-1
... Abstract A cast dragline bucket tooth failed by fracturing after a short time in service. The tooth was made of medium-carbon low-alloy steel heat treated to a hardness of 555 HRB. The fracture surface was covered with chevron marks. These converged at several sites on the surface of the tooth...
Abstract
A cast dragline bucket tooth failed by fracturing after a short time in service. The tooth was made of medium-carbon low-alloy steel heat treated to a hardness of 555 HRB. The fracture surface was covered with chevron marks. These converged at several sites on the surface of the tooth. A hardfacing deposit was located at each of these sites. Visual inspection of the hardfacing deposits revealed numerous transverse cracks, characteristic of many types of hardfacing. This failure was caused by cracks present in hardfacing deposits that had been applied to the ultrahigh-strength steel tooth. Given the small critical crack sizes characteristic of ultrahigh-strength materials, it is generally unwise to weld them. It is particularly inadvisable to hardface ultrahigh-strength steel parts with hard, brittle, crack-prone materials when high service stresses will be encountered. The operators of the dragline bucket were warned against further hardfacing of these teeth.
1