1-20 of 160 Search Results for

cast aluminum alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0046366
EISBN: 978-1-62708-236-5
...Abstract Abstract Several large chromium-plated 4340 steel cylinders were removed from service because of deep longitudinal score marks in the plating. One of the damaged cylinders and a mating cast aluminum alloy B850-T5 bearing adapter that also exhibited deep longitudinal score marks were...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... casting. Cast iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001781
EISBN: 978-1-62708-241-9
...Abstract Abstract A commercial hybrid-iron golf club fractured during normal use. The club fractured through its cast aluminum alloy hosel. Optical analysis revealed casting pores through 20% of the hosel thickness. Mechanical properties were determined from characterization results, then used...
Image
Published: 01 January 2002
. 1400×. (d) Dimple rupture in cast aluminum alloys. 593×. (a), (b), and (c) courtesy of Mohan Chaudhari, Columbus Metallurgical Services, Inc. More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001760
EISBN: 978-1-62708-241-9
... be prevented by eliminating the bolt hole, using a different type of bolt, or adjusting the fastening torque. cylinder head overload failure overtorquing cast aluminum alloy casting pores metallurgical analysis thermomechanical fatigue strength EN 46200 (aluminum alloy AlSi8Cu3) Introduction...
Image
Published: 01 January 2002
Fig. 21 Fatigue striations in a cast A356 aluminum alloy. (a) 500×. (b) 1500× More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001753
EISBN: 978-1-62708-241-9
.... The chemical composition of the sand-cast component was identified via optical emission spectroscopy and is comparable to an aluminum sand-cast alloy, AA 712.0. Metallographic evaluation via optical microscopy and scanning electron microscopy revealed a high degree of porosity in the microstructure as well...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001908
EISBN: 978-1-62708-235-8
... Component: Rockeye Cluster Bomb tailcone assemblies Manufacturing defects: Casting heat checks, inclusions, porosity, shrinkage Background ARL conducted an analysis of two semicircular aluminum die-castings (Alloy A356) that are components of the tailcone assembly of the Rockeye Cluster Bomb...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001543
EISBN: 978-1-62708-218-1
... to 500 F, and must withstand explosive loads which can exceed 1,000 psi. Because light weight is needed, virtually all such pistons are cast aluminum. The preferred alloy is 357 aluminum, which contains 6.5 to 7.5 Si and 0.45 to 0.60 Mg. Tensile strength is 45,000 to 52,000 psi in solution treated, aged...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001522
EISBN: 978-1-62708-235-8
...Abstract Abstract In the EMD-2 Joint Directed Attack Munition (JDAM), the A357 aluminum alloy housing had been redesigned and cast via permanent mold casting, but did not meet the design strength requirements of the previous design. Mechanical tests on thick and thin sections of the forward...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001029
EISBN: 978-1-62708-214-3
...Abstract Abstract Two investment-cast A356 aluminum alloy actuators used for handles on passenger doors of commercial aircraft fractured during torquing at less than the design load. Visual examination showed that cracking had occurred through a machined side hole. Fractography revealed...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001640
EISBN: 978-1-62708-235-8
... by the presence of surface imperfections. Improving the surface finish or choosing a stronger alloy, were more likely to improve part durability than reducing the porosity. Complex failures Data interpretation Deviations from ideality Thinking errors Aluminum casting Casting-related failures A new...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001809
EISBN: 978-1-62708-241-9
... throughout the body. Additionally, the ceramic coating was completely removed from the impeller. Chemical analysis at two different locations was performed by inductively coupled plasma (ICP) spectroscopy. The results were consistent with a cast NAB alloy, C95800 ( Table 1 ). The aluminum content varied from...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001123
EISBN: 978-1-62708-214-3
... in a humid environment in a coastal area. It was recommended that proper chemical analysis of the zinc-aluminum alloy be carried out as a quality control procedure. Die castings Marine environments Zamak 3 Intergranular corrosion Intergranular fracture Background Extensive cracking...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001303
EISBN: 978-1-62708-215-0
...Abstract Abstract A sand-cast LM6M aluminum alloy sprocket drive wheel in an all-terrain vehicle failed. Extensive cracking had occurred around each of the six bolt holes in the wheel. Evidence of considerable deformation in this area was also noted. Examination indicated that the part failed...
Image
Published: 01 January 2002
Fig. 58 As-cast gray cast iron loaded in tension. It is common to find little or no macroscale information visible on the fracture surface of many casting alloys to indicate the fracture origin and direction of crack propagation. There are exceptions to this, including the nodular irons and some More
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
... to perform the intended function is decreased. The article addresses factors that may cause failures in castings for each metal type, starting with gray iron and progressing to ductile iron, steel, aluminum, and copper-base alloys. It describes the general root causes of failure attributed to the casting...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001222
EISBN: 978-1-62708-225-9
... of the cracks. Because the die cast brass was alloyed with aluminum, these inclusions consisted predominantly of aluminum oxide. The tolerable limit in pores and oxide inclusions was greatly exceeded in the lift disk under examination. Above all, the numerous oxide skins disrupted the cohesion...
Image
Published: 01 January 2002
Fig. 22 (a) Cold shut voids (A, B) and flow lines (C, D) both caused by failure of the streams of molten metal to merge, at the cast surface (E) of an alloy 384-F die casting. 0.5% hydroflouric acid. 53× (b) Gate area (A) of an alloy 413-F die casting that has a cold shut void (B) and a region More
Image
Published: 30 August 2021
Fig. 36 (a) Cold shut voids (A, B) and flow lines (C, D), both caused by failure of the streams of molten metal to merge, at the cast surface (E) of an alloy 384-F die casting. 0.5% hydrofluoric acid. Original magnification: 53×. (b) Gate area (A) of an alloy 413-F die casting that has a cold More