1-20 of 335 Search Results for

cast alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2002
Fig. 34 Microstructure of Mar-M-247 heat treated cast alloy for gas turbine components showing different sizes of γ′ particles. Electropolished and electroetched. Courtesy of Dr. J.F. Radavich, Micro-Met Laboratories More
Image
Published: 15 January 2021
Fig. 34 Microstructure of Mar-M-247 heat treated cast alloy for gas turbine components showing different sizes of γ′ particles. Electropolished and electroetched. Courtesy of J.F. Radavich, Micro-Met Laboratories More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001753
EISBN: 978-1-62708-241-9
... composition of the sand-cast component was identified via optical emission spectroscopy and is comparable to an aluminum sand-cast alloy, AA 712.0. Metallographic evaluation via optical microscopy and scanning electron microscopy revealed a high degree of porosity in the microstructure as well as the presence...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048620
EISBN: 978-1-62708-225-9
.... Fasteners Intergranular corrosion Zinc-aluminum die casting alloy Stress-corrosion cracking The two nuts shown in Fig. 1(a) and (b) were used to secure the water-supply pipes to the threaded connections on hot-water and cold-water taps. The nut used on the cold-water tap ( Fig. 1a ) fractured...
Image
Published: 15 January 2021
Fig. 58 As-cast gray cast iron loaded in tension. It is common to find little or no macroscale information visible on the fracture surface of many casting alloys to indicate the fracture origin and direction of crack propagation. Exceptions to this include nodular irons and some aluminum More
Image
Published: 01 January 2002
Fig. 58 As-cast gray cast iron loaded in tension. It is common to find little or no macroscale information visible on the fracture surface of many casting alloys to indicate the fracture origin and direction of crack propagation. There are exceptions to this, including the nodular irons More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001908
EISBN: 978-1-62708-235-8
...: Rockeye Cluster Bomb tailcone assemblies Manufacturing defects: Casting heat checks, inclusions, porosity, shrinkage Background ARL conducted an analysis of two semicircular aluminum die-castings (Alloy A356) that are components of the tailcone assembly of the Rockeye Cluster Bomb. As the name...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001224
EISBN: 978-1-62708-232-7
... in volume which puts the steel under stress 1 . The fractures of the finned tubes were both coarse- and fine-grained and undistorted which is not uncommon for this casting alloy ( Fig. 1 ). For the metallographic investigation, in which was also included an unused recuperator for purposes of comparison...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0047220
EISBN: 978-1-62708-220-4
... of heavy sections can also be helpful. Stress relief can diminish internal stresses if the cast alloy is amenable to such treatment. Selected References Selected References • Failures Related to Casting , Failure Analysis and Prevention , Vol 11 , ASM Handbook , ASM International , 2002 , p...
Image
Published: 01 June 2019
Fig. 1 Fracture surface of cast 10-cm (4-in.) high-strength low-alloy steel chain link that failed because of internal hydrogen-assisted cracking. Note hydrogen flake. 0.25× More
Image
Published: 01 June 2019
Fig. 1 Section through weld in a roadarm (a weldment of low-alloy steel castings). The roadarm fractured in the HAZ because of high carbon-equivalent content. Fracture surface is at arrow. 0.8× More
Image
Published: 01 June 2019
Fig. 1 Die-cast zinc alloy nuts from a water tap. (a) Nut for the cold-water tap that failed by SCC. (b) Mating nut for the hot-water top that shows only isolated areas of corrosion. (c) Unetched section showing metal in the cold-water tap after corrosion testing. 600× More
Image
Published: 01 January 2002
Fig. 21 Fatigue striations in a cast A356 aluminum alloy. (a) 500×. (b) 1500× More
Image
Published: 01 January 2002
Fig. 4 Sand-cast low-alloy steel eye connector from a floating-bridge pontoon that broke under static tensile loading. (a) Schematic illustration of pontoon bridge and enlarged view of eye and clevis connectors showing location of fracture in eye connector. (b) A fracture surface of the eye More
Image
Published: 01 January 2002
Fig. 10 Retrieved screw of cast Co-Cr-Mo alloy (type ASTM F75). (a) Defective screw threads from casting deficiencies. (b) Longitudinal section through threads showing porosity. 15×. (c) Enlarged thread of section shown in (b) with gas holes, segregation of primary phases, and dissolved oxides More
Image
Published: 01 January 2002
Fig. 20 Highway-truck equalizer beam, sand cast from low-alloy steel, that fractured because of mechanical cracking. (a) Fracture surface; detail A shows increments (regions B, C, D, and E) in which crack propagation occurred sequentially. Dimensions given in inches. (b) Micrograph More
Image
Published: 01 January 2002
Fig. 55 Cast heat-resistant alloy HH, type II, showing the effects of long-term exposure to temperatures between 705 and 925 °C (1300 and 1700 °F) More
Image
Published: 01 January 2002
Fig. 56 Cast heat-resistant alloy HH, type II, showing cracking through intergranular carbides More
Image
Published: 01 January 2002
Fig. 57 Sigma (σ) phase in cast heat-resistant alloy HH, type II. Intermetallic phases, such as σ, can greatly reduce the ductility of many high-temperature alloys in service at temperatures from 480 to 955 °C (900 to 1750 °F). More