Skip Nav Destination
Close Modal
Search Results for
bulging
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 87
Search Results for bulging
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0092135
EISBN: 978-1-62708-222-8
... the conclusion that the iron shot increased stresses in the choke zone of the barrel, causing it to deform. Variations in the amount of bulging were attributed to a lack of uniformity in wall thickness. Recommendations included making the barrel from steel with a higher yield strength, making the barrel walls...
Abstract
A shotgun barrel fabricated from 1138 steel deformed when test firing alternative nontoxic ammunition. The test shells contained soft iron shot, which at 72 HB, is much harder than traditional lead shot (typically 30 to 40 HB). An investigation based on ID and OD profiling supported the conclusion that the iron shot increased stresses in the choke zone of the barrel, causing it to deform. Variations in the amount of bulging were attributed to a lack of uniformity in wall thickness. Recommendations included making the barrel from steel with a higher yield strength, making the barrel walls thicker and more uniform, and/or developing an alternative nontoxic metal shot with a hardness in the range of 30 to 40 HB.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001850
EISBN: 978-1-62708-241-9
... Abstract After about a year of uninterrupted service, one of the blow pipes on a blast furnace developed a bulge measuring 300 x 150 x 12 mm. The conical shaped section was removed from the furnace and examined to determine why it failed. The investigation consisted of visual inspection...
Abstract
After about a year of uninterrupted service, one of the blow pipes on a blast furnace developed a bulge measuring 300 x 150 x 12 mm. The conical shaped section was removed from the furnace and examined to determine why it failed. The investigation consisted of visual inspection, chemical analysis, microstructural characterization, and mechanical property testing. The pipe was made from nonresulfurized carbon steel as specified and was lined with an alumina refractory. Visual inspection revealed cracks in the refractory lining, which corresponded with the location of the bulge. Microstructural and EDS analysis yielded evidence of overheating, revealing voids, scale, grain boundary oxidation, decarburization, and grain coarsening on the inner surface of the pipe, which also suggest the initiation of creep. Based on the information gathered during the investigation, the blow pipe was exposed to high temperatures when the liner cracked and subsequently bulged out due to creep.
Image
Published: 01 December 1993
Fig. 11 Section A in Fig. 5 . Note the radial bulging of the material and the extrution of the metal between the fractured oxide. Unetched
More
Image
Published: 01 December 1993
Fig. 2 Profile of tube 4 fireside showing the localized natureof the bulging, 0.04×
More
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001739
EISBN: 978-1-62708-215-0
... Abstract The rear wall tube section of a boiler that had been in service for approximately 38 years was removed and examined. Visual examination of the tube revealed a small bulge with a through-wall crack. Metallography showed that the microstructure of the bulged area consisted of a few...
Abstract
The rear wall tube section of a boiler that had been in service for approximately 38 years was removed and examined. Visual examination of the tube revealed a small bulge with a through-wall crack. Metallography showed that the microstructure of the bulged area consisted of a few partially decarburized pearlite colonies in a ferrite matrix. The microstructure remote from the bulged area consisted of pearlite in a ferrite matrix. EDS analysis of internal deposits on the tube detected a major amount of iron, plus trace amounts of other elements. The evidence indicated that the bulge and crack in the tube resulted from hydrogen damage. Examination of the remaining water circuit boiler tubing using nondestructive techniques and elimination of any heavy deposit buildup was recommended.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001340
EISBN: 978-1-62708-215-0
... Abstract Two identical “D” tube package boilers, installed at separate plants, experienced a number of tube ruptures after relatively short operating times. The tubes, which are joined by membranes, experienced localized bulging and circumferential cracking along the fireside crown as a result...
Abstract
Two identical “D” tube package boilers, installed at separate plants, experienced a number of tube ruptures after relatively short operating times. The tubes, which are joined by membranes, experienced localized bulging and circumferential cracking along the fireside crown as a result of overheating and thermal fatigue. It was recommended that recent alterations to the steam-drum baffling be remodified to improve circulation in the boiler and prevent further overheating. Several thermocouples were attached to tubes in problem areas of the boiler to monitor the effects of the steam-drum modifications on tube wall temperatures.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001443
EISBN: 978-1-62708-235-8
... Abstract Following the fusing of one of the copper leads in the choke circuit of an electric welder, a piece of the affected lead was obtained for examination. The sample had large internal cavities and surface bulges. It is remarkable that a wire containing defects of the magnitude present...
Abstract
Following the fusing of one of the copper leads in the choke circuit of an electric welder, a piece of the affected lead was obtained for examination. The sample had large internal cavities and surface bulges. It is remarkable that a wire containing defects of the magnitude present in this case could have been drawn without failure. Failure in service was due to overheating resulting from the inability of the conductor to carry the current where its cross section was reduced by the presence of a cavity. Another failure of a conductor occurred in one of the field coils of a direct-current motor. The mode of failure and the changes in the microstructure showed that fracture was due to a defective resistance butt-weld which had been made when the wire was in process of drawing. A further example of a conductor failure occurred in a 12 SWG copper connection between the rotor contactor and the resistance in a starter. A transverse section through the zone of failure showed an oxide layer extended almost completely across the plane of a weld, and also the grain growth that had occurred in this region.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047010
EISBN: 978-1-62708-234-1
... Abstract When bulging occurred in mortar tubes made of British I steel during elevated-temperature test firing, a test program was formulated to evaluate the high-temperature properties (at 540 to 650 deg C, or 1000 to 1200 deg F) of the British I steel and of several alternative alloys...
Abstract
When bulging occurred in mortar tubes made of British I steel during elevated-temperature test firing, a test program was formulated to evaluate the high-temperature properties (at 540 to 650 deg C, or 1000 to 1200 deg F) of the British I steel and of several alternative alloys including a maraging steel (18% Ni, grade 250), a vanadium-modified 4337 gun steel (4337V), H19 tool steel, and high-temperature alloys Rene 41, Inconel 718, and Udimet 630. All the alloys evaluated had been used in mortar tubes previously or were known to meet the estimated minimum yield strength. The alloys fall in this order of decreasing strengths: Udimet 630, Inconel 718, Rene 41, H19 tool steel, British I steel, 4337V gun steel, and maraging steel. When cycled between room temperature and 540 to 650 deg C (1000 to 1200 deg F), only Udimet 630, Inconel 718, and Rene 41 retained yield strengths higher than the minimum. Also, these three alloys maintained high strengths over the tested range, whereas the others decreased in yield strength as cycling progressed. Analysis showed Inconel 718 was considered best suited for 81-mm mortar tubes, and widespread industrial use ensured its availability.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0060144
EISBN: 978-1-62708-234-1
... Abstract Two steam-methane reformer furnaces were subjected to short-time heat excursions because of a power outage, which resulted in creep bulging in the Incoloy 800 outlet pigtails, requiring complete replacement. Each furnace had three cells, consisting of 112 vertical tubes per cell, each...
Abstract
Two steam-methane reformer furnaces were subjected to short-time heat excursions because of a power outage, which resulted in creep bulging in the Incoloy 800 outlet pigtails, requiring complete replacement. Each furnace had three cells, consisting of 112 vertical tubes per cell, each filled with a nickel catalyst. The tubes were centrifugally cast from ASTM A297, grade HK-40 (Fe-25Cr-20Ni-0.40C), heat-resistant alloy. The tube was concluded after metallurgical inspection to have failed from creep rupture (i.e., stress rupture). A project for detecting midwall creep fissuring was instigated as a result of the failure. It was concluded after laboratory radiography and macroexamination that if the fissure were large enough to show on a radiograph, either with or without the catalyst, the tube could be expected to fail within one year. The set up for in-service radiograph examination was described. The tubes of the furnace were radiographed during shut down and twenty-four tubes in the first furnace and 53 in the second furnace showed significant fissuring. Although, radiography was concluded to be a practical technique to provide advance information, it was limited to detecting fissures caused by third-stage creep in tubes because of the cost involved in removing the catalysts.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0060154
EISBN: 978-1-62708-234-1
... from different sections (ruptured area, slightly bulged but nonruptured area and visually sound metal) were inspected. The presence of pinhead-size intergranular fissures throughout the cross sections of the latter two samples was observed. An ultrasonic attenuation method was employed to investigate...
Abstract
One of the coils in the radiant section of a primary reformer furnace used in an ammonia plant was found leaking. The bottom of one of seven outlet headers (made of ASME SA-452, grade TP316H, stainless steel) was revealed during examination to be ruptured. It was revealed by metallurgical examination that it had failed as a result of intergranular fissuring and oxidation (creep rupture). The ruptured area revealed that the header had failed by conventional long-time creep rupture as a result of exposure to operating temperatures probably between 900 and 955 deg C. Three samples from different sections (ruptured area, slightly bulged but nonruptured area and visually sound metal) were inspected. The presence of pinhead-size intergranular fissures throughout the cross sections of the latter two samples was observed. An ultrasonic attenuation method was employed to investigate the remaining headers. All headers were revealed by ultrasonic readings to be in an advanced stage of creep rupture and no areas were found to be fissured to a degree that they needed immediate replacement. As a conclusion, the furnace was deemed serviceable and it was established that in the absence of local hot spots, the headers would survive for a reasonable period of time.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001726
EISBN: 978-1-62708-234-1
... Abstract A carbon steel furnace tube which should have given good service for ten years ruptured after one year. The tube showed obvious swelling at the point of rupture, and the bulged surface of the tube was oxidized at a temperature far above the design temperature. There was little...
Abstract
A carbon steel furnace tube which should have given good service for ten years ruptured after one year. The tube showed obvious swelling at the point of rupture, and the bulged surface of the tube was oxidized at a temperature far above the design temperature. There was little or no loss in wall thickness due to corrosion or scaling, and the tube wall was thinned to a knife edge at the rupture. Metallographic examination showed the condition of the material was satisfactory. The failure was mechanical in nature, typical of short time creep rupture. The localized oxidation indicated improper furnace operation or blockage of the tube. The furnace was checked and found to have a burner tip out of order. After the tip was repaired, localized overheating was minimized and further premature failures did not occur.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001814
EISBN: 978-1-62708-241-9
... Abstract A pressure vessel failed causing an external fire on a nine-story coke gasifier in a refinery power plant. An investigation revealed that the failure began as cracking in the gasifier internals, which led to bulging and stress rupture of the vessel shell, and the escape of hot syngas...
Abstract
A pressure vessel failed causing an external fire on a nine-story coke gasifier in a refinery power plant. An investigation revealed that the failure began as cracking in the gasifier internals, which led to bulging and stress rupture of the vessel shell, and the escape of hot syngas, setting off the fire. The failure mechanisms include stress relaxation cracking of a large diameter Incoloy 825 tube, stress rupture of a 4.65 in. thick chromium steel shell wall, and the oxidation of chromium steel exposed to hot syngas. The gasifier process and operating conditions that contributed to the high-temperature degradation were also analyzed and are discussed.
Image
in Failure Analysis of Welded Structures
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 16 The anomaly on the weld surface (a bulge) was clearly seen on the fracture surface.
More
Image
in Hydrogen Damage in a Waterwall Boiler Tube Section
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 1 Macrographs showing the external (a) and internal (b) surfaces of the bulge. Note the thick deposit on the internal surface (b).∼4.35×
More
Image
in Hydrogen Damage in a Waterwall Boiler Tube Section
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 2 Macrographs showing a cross section through the bulge after a hydrochloric macroetch. The dark areas denote hydrogen damage. A closeup view of the bulge is shown in (b).
More
Image
in Hydrogen Damage in a Waterwall Boiler Tube Section
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 3 Typical microstructure of the bulged area, consisting of a few partially decarburized pearlite colonies in a ferrite matrix with grain-boundary fissures. Etched in nital. (a) 76×. (b) 304×
More
Image
in Hydrogen Damage in a Waterwall Boiler Tube Section
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 4 Through-wall crack in the bulged area. Note the severe fissuring surrounding the crack. The arrows point to a large copper deposit. The outside diameter is at the top, the inside diameter at the bottom. Etched in nital. 19.25×
More
Image
in Investigation on Bulging of Blow Pipe in a Blast Furnace
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 2 ( a ) General view of a bulged out blow pipe, ( b ) view of the inner portion of the blow pipe showing cracking of refractory, ( c ) closer view at the inner surface of blow pipe with cracked refractory, and ( d ) sample collected from the bulged out portion
More
Image
in Investigation on Bulging of Blow Pipe in a Blast Furnace
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 3 ( a ) Macrostructure at the cross-section of the blow pipe at bulged out zone, ( b ) microstructural examination under optical microscope at the cross-section of the specimen from bulged out zone, ( c ) inner surface of the specimen showing grain boundary oxidation, decarburization
More
Image
in Investigation on Bulging of Blow Pipe in a Blast Furnace
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 5 (a) Location of EDS analysis at the inner surface of the specimen from bulged zone, and (b) results of EDS analysis shows the formation of oxide
More
1