1-20 of 25 Search Results for

branching polymers

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003541
EISBN: 978-1-62708-180-1
.... In general, simple polymers (with little or no side branching) crystallize very easily. Crystallization is inhibited in heavily cross-linked (thermoset) polymers and in polymers containing bulky side groups. There are three categories of polymers: thermoplastics, thermosetting plastics, and elastomers...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0001667
EISBN: 978-1-62708-225-9
... (hardness: 42 HRC) that failed by hydrogen-assisted SCC caused by acidic chlorides from a leaking polymer solution. (a) Overall view of failed bolts. (b) Longitudinal section through one of the failed bolts in (a) showing multiple, branched hydrogen-assisted stress-corrosion cracks initiating from...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003550
EISBN: 978-1-62708-180-1
... and polymeric materials are tabulated in many references ( Ref 2 , 3 ). When linear or branched thermoplastic polymers are exposed to large enough quantities of solvents having solubility parameters within approximately ±2 H of that of the polymer, dissolution of the polymer will occur. In smaller quantities...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006757
EISBN: 978-1-62708-295-2
...Basic characteristics of engineering polymers Table 1 Basic characteristics of engineering polymers Location (a) Characteristics Examples (b) 1 Flexible and crystallizable chains PEPPPVCPA 2 Cross-linked amorphous networks of flexible chains Phenol-formaldehyde cured...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003522
EISBN: 978-1-62708-180-1
.... The article concludes with a review of the evaluation of polymers and ceramic materials in failure analysis. Auger electron spectroscopy ceramic materials corrosion electron probe microanalysis energy dispersive spectroscopy failure analysis macroscopic examination metallographic specimen...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001815
EISBN: 978-1-62708-241-9
... to a refrigerant compressor sealed internal chamber that contained the motor, R-134a refrigerant, and lubricating oil at less than 65 °C. Simultaneously, the pins provided the balancing tensile stress required to compress an annular gasket seal surrounded by rigid insulating polymer standoffs. The common fracture...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001066
EISBN: 978-1-62708-214-3
... branches ( Fig. 5 ), a form commonly associated with stress-corrosion cracking (SCC). Fig. 5 Intergranular cracking through the ferrite/pearlite matrix.Picral etch. 100× SEM/EDS analysis of the fracture surfaces was performed prior to cleaning. Only iron oxide was present. No anionic species...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003537
EISBN: 978-1-62708-180-1
... appearance and mechanism facilitate potential scaling to fabricated engineering components. Several compilations of fractographic information (albeit dated in some instances) are also available for metals, polymers, ceramics, and composites. Examples include Ref 14 , 15 , 16 , 17 , 18 , 19 , 20...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
... bond is weak. Polymers may or may not be oriented (i.e., whether there is alignment of the carbon backbone chains). Seldom are polymeric materials completely crystalline, and crystallinity decreases with complexity of the pendant atom groups (steric hindrance), chain branching, as well...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... stress, an environment, and a susceptible material. Although manifest mostly in metals, it can also occur in other engineering solids, such as ceramics and polymers. Removal of or changes in any one of these three factors will often eliminate or reduce susceptibility to SCC and therefore are obvious ways...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
... of polymeric materials to form crystalline solids depends in part on the complexity of the pendant side groups of atoms attached to the covalently bonded carbon atom backbone. Crystallinity is also decreased if the polymer is branched. Seldom is crystallinity complete in a polymeric material. Crystal...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006782
EISBN: 978-1-62708-295-2
... by Fourier transform infrared spectroscopy Sample No. Base polymer Plasticizer Amount of 128.63460.0995 plasticizer, wt% 1 Polyvinyl chloride Alkyl phthalate (a) 2 Polyvinyl chloride Alkoxyl phthalate 54 3 Polyvinyl chloride Alkoxyl phthalate 57 (a) Extraction...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006753
EISBN: 978-1-62708-295-2
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
...• Single crack with no branching• Surface slip band emergence • Cleavage or intergranular fracture• Origin area may contain an imperfection or stress concentrator • Progressive zone: worn appearance, flat, may show striations at magnifications above 500ו Overload zone: may be either ductile or brittle...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003501
EISBN: 978-1-62708-180-1
... will be made from metal, plastic, ceramic, or composite. Level II: Determine whether metal parts will be produced by a deformation process (wrought) or a casting process; for plastics, determine whether they will be thermoplastic or thermosetting polymers. Level III: Narrow options to a broad...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006765
EISBN: 978-1-62708-295-2
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006789
EISBN: 978-1-62708-295-2
... in the figure). This transition is triggered by the attainment of a critical surface temperature, at which damage of the polymeric binder is induced. As a consequence, the friction material is no longer able to sustain the protective scales, and severe wear is therefore triggered. When using polymers...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001819
EISBN: 978-1-62708-180-1
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003564
EISBN: 978-1-62708-180-1
.... (London) A , Vol 299 , 1967 , p 307 – 316 14. Bethune B.J. , The Surface Cracking of Glassy Polymers under a Sliding Spherical Indenter , J. Mater. Sci. , Vol 11 , 1971 , p 199 – 205 15. Warren R. , Measurement of the Fracture Properties of Brittle Solids by Hertzian...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003500
EISBN: 978-1-62708-180-1