1-20 of 30 Search Results for

biomedical implants

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001606
EISBN: 978-1-62708-226-6
... Abstract Failures of four different 300-series austenitic stainless steel biomedical fixation implants were examined. The device fractures were observed optically, and their surfaces were examined by scanning electron microscopy. Fractography identified fatigue to be the failure mode for all...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001664
EISBN: 978-1-62708-226-6
... Orthopedic Implants,” Journal of Biomedical Materials Research , Vol. 3 , pp. 247 – 265 ( 1969 ). 2. Hughes A. N. and Jordan B. A. , “Metallurgical Observations on Some Metallic Surgical Implants Which Failed in Vivo,” Journal of Biomedical Materials Research , Vol. 6 , pp. 33...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001803
EISBN: 978-1-62708-241-9
... for Osteosynthesis ,” J. Eng. Failure Analys. , 2003 , 10 , in press. 10.1016/S1350-6307(02)00067-5 4. Pitrowski G. : “ Clinical Biomedics ,” Proc. Int. Symp. on Retrieval and Analysis of Orthopaedic Implants , NBS special publ. 472, National Bureau of Standards , MD , 1976 , pp. 41 – 49 . 5...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001097
EISBN: 978-1-62708-214-3
... and mechanical properties. At the present time, stainless steels are not used in permanent implants, such as hip or knee joint prostheses, because their corrosion resistance is inadequate; the cobalt-chromium-molybdenum alloys of ASTM F 75 are used instead. Biomedical material 316L UNS S31603 Pitting...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048419
EISBN: 978-1-62708-226-6
... of type 316LR stainless steel and some mechanical fretting and very few corrosion pits were revealed. Type 304 stainless steel was deemed not to be satisfactory as an implant material. Inclusions Surgical implants 304 UNS S30400 Pitting corrosion Figure 1 shows a screw head that exhibits...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048413
EISBN: 978-1-62708-226-6
... on the surface during cyclic loading were observed. The material was showed by the deformation structure to be in the cold-worked condition and was termed to not be the cause of the implant failure. Cyclic loads Slip bands Surgical implants 316L UNS S31603 Fatigue fracture Figure 1(a) shows...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0089543
EISBN: 978-1-62708-226-6
.... Bone screws Casting defects Screws Surgical implants ASTM F75 Casting-related failures Portions of the threads of the screw shown in Fig. 1(a) had broken off, and other threads had cracked. The screw was made from a cast Co-Cr-Mo alloy. A longitudinal section through the screw revealed gas...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048400
EISBN: 978-1-62708-226-6
... not to be in compliance with standards (type 304 stainless steel without molybdenum). The screws and washers were found to be made of remelted implant-quality type 316L stainless steel and were intact. Signs of sensitization, characterized by chromium carbide precipitates at the grain boundaries, were revealed...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001573
EISBN: 978-1-62708-226-6
.... Arcing Pitting (wear) Surgical implants Wire Ti-6Al-4V Titanium nitride coating UNS R56406 Surface treatment related failures (Other, miscellaneous, or unspecified) wear Background The TiN coated back surgery wires were made of Ti6A14V. The reported failure was the presence of pits...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006811
EISBN: 978-1-62708-329-4
... assist devices (LVADs), insulin pumps, and other devices. Implantable Cardioverter Defibrillators The ICDs are biomedical devices used primarily to treat patients who have been previously resuscitated from sudden cardiac death (SCD) ( Ref 50 ). An SCD can occur during fast abnormal heart rhythm...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048397
EISBN: 978-1-62708-226-6
... Phase transformations Surgical implants Chromium steel Uniform corrosion The four-hole Lane plate shown in Fig. 1(a) was inserted 46 years ago and remained in the body for 26 years. A large portion of the plate disintegrated and consisted mainly of corrosion products. Figure 1(b) shows...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048421
EISBN: 978-1-62708-226-6
... of corrosion were observed in connection with fretting structures. Surgical implants Wear particles Titanium Fretting wear Figure 1(a) shows a portion of a titanium screw head with a lip of material that was transported by fretting at a plate-hole edge. A flat fretting zone is visible...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048420
EISBN: 978-1-62708-226-6
... to be possible. Biochemistry Surgical implants Wear particles 316LR Pitting corrosion Figure 1 shows a plate hole with the area that was in contact with the screw head. In contrast to Example, the attack on this high-quality type 316LR stainless steel was only shallow. Figure 1(a) shows...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048405
EISBN: 978-1-62708-226-6
.... The screws were used with a relatively rigid plate to treat a fracture complication in the upper end of the femur. The fatigue failures were explained by signs of unstable fixation revealed by radiographs. Surgical implants 316LR Fatigue fracture Fatigue fracture can occur on different thread...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048423
EISBN: 978-1-62708-226-6
... Abstract The bone cement failed at the distal end of the prosthesis stem of femoral head prosthesis six months after implantation. A small indentation on the lateral contour of the stem was visible where the stem had broken. The degree of loosening (gap between the lateral stem contour...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048410
EISBN: 978-1-62708-226-6
... by the beach marks which indicated the action of asymmetric bending and rotational forces. Loads (forces) Nonmetallic inclusions Slags Surgical implants Torsion 316 UNS S31600 Fatigue fracture A narrow bone plate was used to stabilize an open midshaft femur fracture in an 18 year old patient...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001579
EISBN: 978-1-62708-226-6
... Abstract Stainless steel is frequently used for bone fracture fixation in spite of its sensitivity to pitting and cracking in chloride containing environments (such as organic fluids) and its susceptibility to fatigue and corrosion fatigue. A 316L stainless steel plate implant used for fixation...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048399
EISBN: 978-1-62708-226-6
... on the fracture surface of this pin. Thus, the effect of different conditions of cobalt-chromium alloys on failure behavior was demonstrated as a result of this study. Grain boundaries Surgical implants ASTM F75 Brittle fracture Two of four adjustable Moore pins, which had been used to stabilize...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001690
EISBN: 978-1-62708-226-6
... Abstract This paper summarizes several cases of metallurgical failure analysis of surgical implants conducted at the Laboratory of Failure Analysis of IPT, in Brazil. Investigation revealed that most of the samples were not in accordance with ISO standards and presented evidence of corrosion...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048403
EISBN: 978-1-62708-226-6
... direction. A zone of heavily deformed grains at the fracture edge was revealed by longitudinal metallographic examination. The shearing fractures of a commercially pure titanium screw and a cast cobalt-chromium-molybdenum alloy were discussed for purpose of comparison. Deformation Surcigal implants...