Skip Nav Destination
Close Modal
By
Jigneshkumar P. Patel, Yanika Schneider, Malavarayan Sankarasubramanian, Vidya Jayaram
Search Results for
biomedical alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 21 Search Results for
biomedical alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001606
EISBN: 978-1-62708-226-6
... Abstract Failures of four different 300-series austenitic stainless steel biomedical fixation implants were examined. The device fractures were observed optically, and their surfaces were examined by scanning electron microscopy. Fractography identified fatigue to be the failure mode for all...
Abstract
Failures of four different 300-series austenitic stainless steel biomedical fixation implants were examined. The device fractures were observed optically, and their surfaces were examined by scanning electron microscopy. Fractography identified fatigue to be the failure mode for all four of the implants. In every instance, the fatigue cracks initiated from the attachment screw holes at the reduced cross sections of the implants. Two fixation implant designs were analyzed using finite-element modeling. This analysis confirmed the presence of severe stress concentrations adjacent to the attachment screw holes, the fatigue crack initiation sites. Conclusions were reached regarding the design of these types of implant fixation devices, particularly the location of the attachment screw holes. The use of austenitic stainless steel for these biomedical implant devices is also addressed. Recommendations to improve the fixation implant design are suggested, and the potential benefits of the substitution of titanium or a titanium alloy for the stainless steel are discussed.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001803
EISBN: 978-1-62708-241-9
..., but have also been adapted for biomedical applications. The development of titanium alloys especially intended to be used in living bodies began with the introduction of new alloys using biocompatible β stabilizer elements, such as iron, tantalum, zirconium, tin, and niobium. [ 3 ] The manufacturing...
Abstract
Metallurgical SEM analysis provides many insights into the failure of biomedical materials and devices. The results of several such investigations are reported here, including findings and conclusions from the examination a total hip prosthesis, stainless steel and titanium compression plates, and hollow spinal rods. Some of the failure mechanisms that were identified include corrosive attack, corrosion plus erosion-corrosion, inclusions and stress gaps, production impurities, design flaws, and manufacturing defects. Failure prevention and mitigation strategies are also discussed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001664
EISBN: 978-1-62708-226-6
... Orthopedic Implants,” Journal of Biomedical Materials Research , Vol. 3 , pp. 247 – 265 ( 1969 ). 2. Hughes A. N. and Jordan B. A. , “Metallurgical Observations on Some Metallic Surgical Implants Which Failed in Vivo,” Journal of Biomedical Materials Research , Vol. 6 , pp. 33...
Abstract
A compression hip screw is a device designed to hold fractures in the area of the femur in alignment and under compression. A side plate, which is an integral part of the device, is attached by screws to the femur, and it holds the compression screw in position. The device analyzed had broken across the eighth hole (of nine holes) from the end of the plate. The detailed metallurgical failure analysis of the device, including metallography and fractography, is reported here. It was found that the device had adequate metallurgical integrity for the application for which it was intended. It is believed that failure was caused by the lack of a screw in the ninth hole. Evidence is also presented which indicates that the device was bent prior to insertion, and the local plastic deformation may have caused structural changes leading to premature crack initiation.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001097
EISBN: 978-1-62708-214-3
... and mechanical properties. At the present time, stainless steels are not used in permanent implants, such as hip or knee joint prostheses, because their corrosion resistance is inadequate; the cobalt-chromium-molybdenum alloys of ASTM F 75 are used instead. Biomedical material 316L UNS S31603 Pitting...
Abstract
Two type 316L stainless steel orthopedic screws broke approximately 6 weeks after surgical implant. The screws had been used to fasten a seven-hole narrow dynamic compression plate to a patient's spine. The broken screws and screws of the same vintage and source were examined using macrofractography, SEM fractography, and hardness testing. Fractography established that fracture was by fatigue and that the fatigue cracking originated at corrosion pits. Hardness while below specification, still indicated that the screws were in the cold-worked condition and notch sensitive during fatigue loading. Use of a steel with a higher molybdenum content (317L) in the annealed condition was recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0089543
EISBN: 978-1-62708-226-6
... Abstract Threads of a bone screw (Co-Cr-Mo alloy, type ASTM F75) had broken off, and other threads had cracked. 15x sectioning showed porosity, and 155x magnification showed gas holes, segregation, and dissolved oxides. This supports the conclusion that manufacturing defects caused the failure...
Abstract
Threads of a bone screw (Co-Cr-Mo alloy, type ASTM F75) had broken off, and other threads had cracked. 15x sectioning showed porosity, and 155x magnification showed gas holes, segregation, and dissolved oxides. This supports the conclusion that manufacturing defects caused the failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048399
EISBN: 978-1-62708-226-6
... Abstract Two of four adjustable Moore pins, which had been used to stabilize a proximal femur fracture, were found to be broken and deformed at their threads. The pins were made from a cobalt-chromium alloy and were not in the same condition. Brittle precipitates in the grains and grain...
Abstract
Two of four adjustable Moore pins, which had been used to stabilize a proximal femur fracture, were found to be broken and deformed at their threads. The pins were made from a cobalt-chromium alloy and were not in the same condition. Brittle precipitates in the grains and grain boundaries were seen in one of the pins and hence the fracture was revealed to have occurred along the grain boundaries. The other pin made from cold-worked cobalt-chromium alloy was observed to have randomly lines of primary inclusions. Intermingled dimples and fatigue striations were exhibited on the fracture surface of this pin. Thus, the effect of different conditions of cobalt-chromium alloys on failure behavior was demonstrated as a result of this study.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048403
EISBN: 978-1-62708-226-6
... direction. A zone of heavily deformed grains at the fracture edge was revealed by longitudinal metallographic examination. The shearing fractures of a commercially pure titanium screw and a cast cobalt-chromium-molybdenum alloy were discussed for purpose of comparison. Deformation Surcigal implants...
Abstract
During the internal fixation, the type 316LR stainless steel cortical bone screw failed. Extensive spiral deformation was revealed by the fracture surface. Dimple structure characteristic of a ductile failure mode was observed with dimples oriented uniformly in the deformation direction. A zone of heavily deformed grains at the fracture edge was revealed by longitudinal metallographic examination. The shearing fractures of a commercially pure titanium screw and a cast cobalt-chromium-molybdenum alloy were discussed for purpose of comparison.
Book Chapter
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006939
EISBN: 978-1-62708-395-9
... wt% ZnO, nanoparticles showed excellent antimicrobial activity against both gram-positive and gram-negative bacteria ( Ref 190 ). Biomedical applications ZnO nanoparticles and lipopeptide in polyvinyl alcohol films Polyvinyl alcohol nanocomposites were generated by the drop-casting method...
Abstract
Polymer materials are key building blocks of the modern world, commonly used in packaging, automobiles, building materials, electronics, telecommunications, and many other industries. These commercial applications of polymeric materials would not be possible without the use of additives. This article is divided into five sections: mechanical property modifiers, physical property modifiers, biological function modifiers, processing aids, and colorants. It describes three classes of additives that are used to inhibit biological activity, six classes of mechanical property modifiers, three classes of physical property modifiers, and two classes of both colorants and processing aids.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006836
EISBN: 978-1-62708-329-4
.... It also covers failures of shape memory alloy springs and failures caused by corrosion and operating conditions. corrosion failure analysis fatigue failures material defects mechanical springs shape memory alloys MECHANICAL SPRINGS are used in mechanical components to exert force, provide...
Abstract
Mechanical springs are used in mechanical components to exert force, provide flexibility, and absorb or store energy. This article provides an overview of the operating conditions of mechanical springs. Common failure mechanisms and processes involved in the examination of spring failures are also discussed. In addition, the article discusses common causes of failures and presents examples of specific spring failures, describes fatigue failures that resulted from these types of material defects, and demonstrates how improper fabrication can result in premature fatigue failure. It also covers failures of shape memory alloy springs and failures caused by corrosion and operating conditions.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048423
EISBN: 978-1-62708-226-6
... cobalt-chromium-molybdenum alloy. (a) Radiograph of total hip prosthesis. Circular wire marks acetabulum component made from plastics. Arrows (from top to bottom) indicate the area where the prosthesis stem is loosening at the collar, a stem fracture, and a fracture of bone cement at the end of the stem...
Abstract
The bone cement failed at the distal end of the prosthesis stem of femoral head prosthesis six months after implantation. A small indentation on the lateral contour of the stem was visible where the stem had broken. The degree of loosening (gap between the lateral stem contour and the bone or cement) and implant loading was revealed by the dislocation of fragments of the prosthesis. Secondary cracks that had originated at the lateral aspect of the stem were revealed by metallographic examination of a section parallel to the stem surface and perpendicular to the fracture surface of the distal fragment. Gas pores are apparent in the grain and at the grain boundaries were revealed by a transverse section. Fine parallel line structures that run diagonally through the fractograph may be slip traces were revealed by scanning electron microscopy. One of the cracks was revealed to have propagated through a larger gas pore by a ruptured gas pore. The stresses created through the fatigue process activated glide systems which served the formation of secondary cracks along glide planes.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
... corrosion, pitting and crevice corrosion, intergranular corrosion, and velocity-affected corrosion. The article contains a table that lists combinations of alloys and environments subjected to selective leaching and the elements removed by leaching. corrosion crevice corrosion dealuminification...
Abstract
This article addresses the forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. It describes the mechanisms of corrosive attack for specific forms of corrosion such as galvanic corrosion, uniform corrosion, pitting and crevice corrosion, intergranular corrosion, and velocity-affected corrosion. The article contains a table that lists combinations of alloys and environments subjected to selective leaching and the elements removed by leaching.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... of galvanic corrosion is affected by such factors as: The potential difference between the metals or alloys The nature of the environment/the electrical conductivity of the solution where the dissimilar metals are in contact The polarization behavior of the metals or alloys The geometric...
Abstract
Corrosion is the electrochemical reaction of a material and its environment. This article addresses those forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. Various forms of corrosion covered are galvanic corrosion, uniform corrosion, pitting, crevice corrosion, intergranular corrosion, selective leaching, and velocity-affected corrosion. In particular, mechanisms of corrosive attack for specific forms of corrosion, as well as evaluation and factors contributing to these forms, are described. These reviews of corrosion forms and mechanisms are intended to assist the reader in developing an understanding of the underlying principles of corrosion; acquiring such an understanding is the first step in recognizing and analyzing corrosion-related failures and in formulating preventive measures.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006811
EISBN: 978-1-62708-329-4
... in these devices, the three common metal alloys used are titanium, cobalt-chromium, and stainless steel. Other components may also be made from different materials, such as ultrahigh-molecular-weight polyethylene (in the case of the articulating surface within artificial knees or artificial disks) or ceramic...
Abstract
Bearing in mind the three-legged stool approach of device design/manufacturing, patient factors, and surgical technique, this article aims to inform the failure analyst of the metallurgical and materials engineering aspects of a medical device failure investigation. It focuses on the device "failures" that include fracture, wear, and corrosion. The article first discusses failure modes of long-term orthopedic and cardiovascular implants. The article then focuses on short-term implants, typically bone screws and plates. Lastly, failure modes of surgical tools are discussed. The conclusion of this article presents several case studies illustrating the various failure modes discussed throughout.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001805
EISBN: 978-1-62708-241-9
... to prevent them. The study included drills, catheters, and needles subjected to the rigors of biomedical applications such as corrosive environments, high stresses, sterilization, and improper cleaning procedures. Given the extreme conditions to which surgical tools can be exposed, and the potential...
Abstract
Several surgical tool failures were analyzed to understand why they occur and how to prevent them. The study included drills, catheters, and needles subjected to the rigors of biomedical applications such as corrosive environments, high stresses, sterilization, and improper cleaning procedures. Given the extreme conditions to which surgical tools can be exposed, and the potential for misuse, failures are inevitable and systematic methods for analyzing them are necessary to keep them in check.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... alloys, nickel alloys, gold, silver, stainless steel, tool steel, and titanium alloys. Of the metals used in AM production, titanium and its alloys are used prevalently for high-value biomedical and aerospace parts. The deposition rate is lower for PBF, but the PBF processes offer better surface finish...
Abstract
This article provides an overview of metal additive manufacturing (AM) processes and describes sources of failures in metal AM parts. It focuses on metal AM product failures and potential solutions related to design considerations, metallurgical characteristics, production considerations, and quality assurance. The emphasis is on the design and metallurgical aspects for the two main types of metal AM processes: powder-bed fusion (PBF) and directed-energy deposition (DED). The article also describes the processes involved in binder jet sintering, provides information on the design and fabrication sources of failure, addresses the key factors in production and quality control, and explains failure analysis of AM parts.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006782
EISBN: 978-1-62708-295-2
... and one reduction reaction can occur. When an alloy is corroded, its component metals go into solution as their respective ions. More importantly, more than one reduction reaction can occur during corrosion. Consider the corrosion of zinc in aerated hydrochloric acid. Two cathodic reactions are possible...
Abstract
Corrosion is the deterioration of a material by a reaction of that material with its environment. The realization that corrosion control can be profitable has been acknowledged repeatedly by industry, typically following costly business interruptions. This article describes the electrochemical nature of corrosion and provides the typical analysis of environmental- and corrosion-related failures. It presents common methods of testing of laboratory corrosion and discusses the processes involved in the prevention of environmental- and corrosion-related failures of metals and nonmetals.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001690
EISBN: 978-1-62708-226-6
... in stainless steel, one femoral nail plate in stainless steel, one oral maxillofacial plate for jaw reconstruction in a Ti-6Al-4V alloy, and several Nitinol (wrought nickel-titanium shape memory alloy) orthodontic archwires. The experimental procedures consisted of visual inspection of the samples, macroscopic...
Abstract
This paper summarizes several cases of metallurgical failure analysis of surgical implants conducted at the Laboratory of Failure Analysis of IPT, in Brazil. Investigation revealed that most of the samples were not in accordance with ISO standards and presented evidence of corrosion assisted fracture. Additionally, some components were found to contain fabrication/processing defects that contributed to premature failure. The implant of nonbiocompatible materials results in immeasurable damage to patients as well as losses for the public investment. It is proposed that local sanitary regulation agencies create mechanisms to avoid commercialization of surgical implants that are not in accordance with standards and adopt the practice of retrieval analysis of failed implants. This would protect the public health by identifying and preventing the main causes of failure in surgical implants.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001579
EISBN: 978-1-62708-226-6
... the plate was analyzed to determine the alloy composition and the morphology of secondary phases and non-metallic inclusions. Fig. 2 Identification of samples used for failure analysis The alloy composition was determined by microprobe electron analysis EDS coupled with a SEM. The secondary...
Abstract
Stainless steel is frequently used for bone fracture fixation in spite of its sensitivity to pitting and cracking in chloride containing environments (such as organic fluids) and its susceptibility to fatigue and corrosion fatigue. A 316L stainless steel plate implant used for fixation of a femoral fracture failed after only 16 days of service and before bone callus formation had occurred. The steel used for the implant met the requirements of ASTM Standard F138 but did contain a silica-alumina inclusion that served as the initiation point for a fatigue/corrosion fatigue fracture. The fracture originated as a consequence of stress intensification at the edge of a screw hole located just above the bone fracture; several fatigue cracks were also observed on the opposite side of the screw hole edge. The crack propagated in a brittle-like fashion after a limited number of cycles under unilateral bending. The bending loads were presumably a consequence of leg oscillation during assisted perambulation.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006792
EISBN: 978-1-62708-295-2
Abstract
Rolling-contact fatigue (RCF) is a common failure mode in components subjected to rolling or rolling-sliding contact. This article provides a basic understanding of RCF and a broad overview of materials and manufacturing techniques commonly used in industry to improve component life. A brief discussion on coatings to improve surface-initiated fatigue and wear is included, due to the similarity to RCF and the increasing criticality of this failure mode. The article presents a working knowledge of Hertzian contact theory, describes the life prediction of rolling-element bearings, and provides information on physics and testing of rolling-contact fatigue. Processes commonly used to produce bearings for demanding applications are also covered.
1