1-13 of 13 Search Results for

binder jet

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 30 August 2021
Fig. 9 Microstructure of a binder jet part showing isotropic grain structure More
Image
Published: 30 August 2021
Fig. 8 Binder jetting and sintering process. (a) Image of a layer of powder in midprint in the binder jet process. (b) Depowdering after the curing step More
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... considerations, and quality assurance. The emphasis is on the design and metallurgical aspects for the two main types of metal AM processes: powder-bed fusion (PBF) and directed-energy deposition (DED). The article also describes the processes involved in binder jet sintering, provides information on the design...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001840
EISBN: 978-1-62708-241-9
... of β and impact velocity of V F ( Fig. 1 ). As a result of intense oblique impact, the contaminant surface layer of the plates will be removed through formation of a jet. Higher load ratios and/or longer stand-off distances yield higher impact velocities at a fixed detonation velocity...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006789
EISBN: 978-1-62708-295-2
... is the progressive alteration or loss of material from a solid surface by liquid jets produced by collapsing bubbles in a liquid. When a bubble collapses, fluid rushes in to fill the void created by the bubble collapse, and these “jets” of liquid can produce very significant pressures on solid surfaces. These high...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001491
EISBN: 978-1-62708-217-4
... sections of two silica phenolic nozzle liners failed during proof pressure tests. The proof testing was conducted in Marquardt Jet Laboratory Test Cell No. 3 in Van Nuys, CA. in accordance with previously successful procedures. The combustion chamber assembly proof pressure testing is conducted upon...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006864
EISBN: 978-1-62708-395-9
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003524
EISBN: 978-1-62708-180-1
... corrosion-preventive coatings on a fracture specimen. When possible, it is best to dry the fracture specimen, preferably using a jet of dry, compressed air (which will also blow extraneous foreign material from the surface), and then to place it in a dessicator or pack it with a suitable dessicant. However...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.9781627083959
EISBN: 978-1-62708-395-9
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006925
EISBN: 978-1-62708-395-9
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
... installed in a 17 MPa (2500 psig) alloy steel loop, fragmented and released a jet that toppled a 254 Mg (280 ton) ammonia converter. Fig. 4 (a) Ruptured 305 mm (12 in.) carbon steel pipe, inadvertently installed in a 1.25Cr-0.5Mo circuit, that was severely damaged by hydrogen embrittlement. On-stream...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... interfere with the ability of the foundry to use the best techniques to produce reliable castings. Defect-free castings can be produced at a price. The multitude of process variables, such as molding mediums, binder, gating and risering, melting and ladle practice, pouring technique, and heat treatment...