1-20 of 28 Search Results for

beta titanium alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2002
Fig. 43 Effect of Δ K on fatigue fracture mechanisms. (a) Alpha-beta titanium alloy. (b) EN-24 and 300 M steels. (c) 17-4 PH stainless steel. Source: Ref 31 More
Image
Published: 15 January 2021
Fig. 44 Effect of stress-intensity range (Δ K ) on fatigue fracture mechanisms. (a) Alpha-beta titanium alloy. (b) EN-24 and 300M steels. (c) 17-4PH stainless steel. R , stress ratio. Source: Ref 8 More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001782
EISBN: 978-1-62708-241-9
... in fatigue properties can result if conventional machining operations are not carefully controlled. In addition, when welding alpha–beta titanium alloys, shielding atmospheres are required to inhibit weld contamination and the development of brittle structures. Titanium alloy driver heads are hollow...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001667
EISBN: 978-1-62708-235-8
... the microstructural characteristics of titanium and titanium alloys. Oxygen is an alpha phase stabilizer and is a strengthener in alpha titanium alloys (unalloyed titanium), but too much oxygen causes embrittlement of the alpha phase. The presence of an alpha case in an alpha-beta titanium alloy, such as Ti-6Al-4V...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001801
EISBN: 978-1-62708-241-9
... fixation device fracture surface damage titanium alloy notches roughness metallography fatigue crack growth rates ASTM F136 (alpha-beta titanium alloy) UNS R56401 Introduction The Harrington rod, developed in 1953 by Paul Harrington, a professor of orthopedic surgery at Baylor College...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001265
EISBN: 978-1-62708-215-0
... backing of the polyethylene tibial component. Porous-coated and uncoated tibial trays had failed. Applications Titanium alloy knee prostheses are used to replace the articulating surface of diseased or damaged knee joints to restore as much natural function as possible. Atypical knee prosthesis...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001660
EISBN: 978-1-62708-236-5
... pins ( Figure 3 ). The shear bands form during the rolling of the pin threads. Titanium alloys are known to have a high propensity for shear band formation owing to their high strength and low thermal conductivity [ 3 ]. It has been reported that shear band formation in Ti-6Al-4V alpha-beta alloys...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003554
EISBN: 978-1-62708-180-1
... Titanium Hg, Cd, Ag, Au It should be pointed out that alloys of these embrittler metals can also be embrittling. In fact, for service failures, the embrittling metal is probably not pure but is impure or an alloy. For example, tin- and lead-base bearing alloys and solders also cause metal-induced...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001558
EISBN: 978-1-62708-217-4
... to correlate the environment and stress history with microscopic fracture surface features in a titanium alloy liquid hydrogen control valve fracture; and how by comparing the fractographic evidence with knowledge of crack propagation mechanisms in the alloy, investigators were able to point to a probable...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006786
EISBN: 978-1-62708-295-2
..., Ga, Na, In, Sn, Bi, Cd, Pb, Zn Copper Hg, Ga, In, Li, Bi, Cd, Pb Nickel Hg, In, Li, Sn, Pb, Zn, Ag Steels Ferritic/martensitic Hg, Ga, In, Li, Sn, Cd, Pb, Zn, Te, Cu Austenitic Hg, Li, Zn, Cu Titanium Hg, Cd, Ag, Au It should be pointed out that alloys...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006835
EISBN: 978-1-62708-329-4
... of wrought products. The article addresses the types of flaws or defects that can be introduced during the steel forging process itself, including defects originating in the ingot-casting process. Defects found in nonferrous forgings—titanium, aluminum, and copper and copper alloys—also are covered...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001649
EISBN: 978-1-62708-234-1
... Abstract Two titanium alloy wing attachment bolts from a commercial jetliner failed during the course of a routine service operation. Failure of the bolts occurred during the re-torque process as the wing was being reattached. Metallurgical failure analysis indicated that the fracture mechanism...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006760
EISBN: 978-1-62708-295-2
... stainless steel shows wavy alloy segregation. Marble’s etch High-Density Inclusion Heavy metal inclusions, such as tungsten from weld rods, are very detrimental to the performance of titanium components. The composition of the inclusions can be proven with EDS ( Fig. 33 ). Fig. 33 (a) Ti...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... alloys, nickel alloys, gold, silver, stainless steel, tool steel, and titanium alloys. Of the metals used in AM production, titanium and its alloys are used prevalently for high-value biomedical and aerospace parts. The deposition rate is lower for PBF, but the PBF processes offer better surface finish...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... analysis, metallographic analysis, and simulated-service tests. It provides case studies for the analysis of SCC service failures and their occurrence in steels, stainless steels, and commercial alloys of aluminum, copper, magnesium, and titanium. aluminum alloys austenitic stainless steel carbon...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... caustic solutions High-nickel alloys High-purity steam Alpha brass Ammoniacal solutions, chloramine, amine Aluminum alloys Aqueous chloride, bromide, and iodide solutions Titanium alloys Aqueous chloride, bromide, and iodide solutions; organic liquids; N 2 O 4 Magnesium alloys Aqueous...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
... is relatively free from those inclusions that may cause unwanted discontinuities. Air-melted alloys commonly contain inclusions. Vacuum- or electroslag-remelted alloys more commonly contain nonmetallic inclusions, such as titanium carbonitrides or carbides, when carbon or the hardening element form precipitate...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006777
EISBN: 978-1-62708-295-2
... lattice of individual grains, and this disruption provides a source of strengthening by pinning the movement of dislocations (so long as the temperature is not elevated into the creep range for significant dislocation climb). Thus, a finer-grain alloy imparts more grain-boundary regions for improved...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003537
EISBN: 978-1-62708-180-1
... on fracture path Effects on fracture mechanics properties Phase morphology in α-β titanium alloys Change from α and β grains to α in β Crack branching and irregularity greatly increased Higher K Ic and K Issc Increased resistance to fatigue crack growth Large particles in steels...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... principal types. Primary carbides, which form when carbon reacts with strong carbide-forming elements such as tantalum and titanium during the solidification of the molten alloy, have the formula MC, where M is the metallic element. Typically, such carbides have a blocky or scriptlike morphology, as shown...