Skip Nav Destination
Close Modal
Search Results for
bead forming
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 71 Search Results for
bead forming
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001359
EISBN: 978-1-62708-215-0
... Fig. 1 Fatigue crack associated with a bead on the blade surface Fig. 2 Fractograph showing a metallic bead at the origin of fracture Fig. 3 Closeup view of a bead Fig. 4 Energy spectrum from the bead (top trace) and the blade material (bottom trace). Constituents...
Abstract
The cause of low fatigue life measurements obtained during routine fatigue testing of IMI 550 titanium alloy compressor blades used in the first stage of the high-pressure compressor of an aeroengine was investigated. The origin of the fatigue cracks was associated with a spherical bead of metal sticking to the blade surface in each case. Scanning electron microscope revealed that the cracks initiated at the point of contact of the bead with the blade surface. Energy-dispersive X-ray analysis indicated that the bead composition was the same as that of the blade. Detailed investigation revealed that fused material from the blade had been thrown onto the cold blade surface during a grinding operation to remove the targeting bosses from the forgings, thereby causing local embrittlement. It was recommended that extreme care be taken during grinding operations to prevent the hot, fused particles from striking the blade surface.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001049
EISBN: 978-1-62708-214-3
.... Three distinct forms of deterioration were apparent. General corrosion of the weld beads occurred. Corrosion of this form indicates a general lack of corrosion resistance of the weld metal. The weld metals did not conform to specifications. Optical microscope and SEM examinations revealed extensive...
Abstract
Routine inspections of a carbon steel wood pulp digester revealed a sharply increasing number of cracks in the overlay metal on the internal surface of the digester after 1 and 2 years of service. The weld overlay was composed of type 309 stainless steel on the top fourth of the digester and of a proprietary high-nickel material on the bottom three-fourths. Examination revealed three distinct modes of deterioration. General corrosion was linked to the use of unspecified overlay metal. Cracking resulted during installation from the use of a material susceptible to hot cracking. Deep corrosion fissures then developed at hot crack sites as a result of crevice corrosion. Use of the appropriate overlay material was recommended.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006801
EISBN: 978-1-62708-329-4
... Wrinkles form when metal flow into an area is greater than metal flow out Instead of increasing binder pressure, using draw beads or changing the blank edge contour and die entry radius are better approaches to minimizing wrinkles. Each of these approaches is feasible in simulation and therefore can...
Abstract
Sheet forming failures divert resources from normal business activities and have significant bottom-line impact. This article focuses on the formation, causes, and limitations of four primary categories of sheet forming failures, namely necks, fractures/splits/cracks, wrinkles/loose metal, and springback/dimensional. It discusses the processes involved in analytical tools that aid in characterizing the state of a formed part. In addition, information on draw panel analysis and troubleshooting of sheet forming failures is also provided.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001265
EISBN: 978-1-62708-215-0
... and a secondary crack parallel to the fracture surface. Porous beads fractured in the region adjacent to each fracture and migrated into the joint cavity. Fig. 4 Top surface of implant shown in Fig. 3 . Note the severe wear pattern and the presence of beads in the polyethelene surface. Fig. 5...
Abstract
Total knee prostheses were retrieved from patients after radiographs revealed fracture of the Ti-6A1-4 VELI metal backing of the polyethylene tibial component. The components were analyzed using scanning electron microscopy. Porous coated and uncoated tibial trays were found to have failed by fatigue. Implants with porous coatings showed significant loss of the bead coating and subsequent migration of the beads to the articulating surface between the polyethylene tibial component and the femoral component, resulting in significant third-body wear and degradation of the polyethylene. The sintered porous coating exhibited multiple regions where fatigue fracture of the neck region occurred, as well as indications that the sintering process did not fully incorporate the beads onto the substrate. Better process control during sintering and use of subsequent heat treatments to ensure a bimodal microstructure were recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001206
EISBN: 978-1-62708-235-8
... Abstract A number of seamless pipe nipples of 70 mm diam and 3.5 mm wall thickness made of steel type 35.8 were oxyacetylene welded to collectors of greater wall thickness with a round bead. X-ray examination showed crack initiation in the interior of the nipples close to the root of the weld...
Abstract
A number of seamless pipe nipples of 70 mm diam and 3.5 mm wall thickness made of steel type 35.8 were oxyacetylene welded to collectors of greater wall thickness with a round bead. X-ray examination showed crack initiation in the interior of the nipples close to the root of the weld seam. The cracks only appeared where the originally deposited bead was remelted in the regions of overlap. Given the construction and welding technique used, it would have been preferable to make the nipples of a steel lower in sulfur content. However, by taking advantage of all the potential in shaping and welding technology, it should be possible to prevent crack formation with steel type 35.8 of normal composition.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001307
EISBN: 978-1-62708-215-0
..., 143, 130, 140, 131 Weld bead on inner surface 430, 426, 401 Weld bead on outer surface 366, 385, 397 EDAX results obtained on the broken spring hanger and its weld metal Table 1 EDAX results obtained on the broken spring hanger and its weld metal Specimen No. Location...
Abstract
The right front spring hanger on a dual rear axle of the tractor of a tractor-trailer combination failed, causing the vehicle to roll-over. The hanger was made from malleable cast iron that had been heat treated to produce a decarburized surface layer and a pearlitic transition layer. It had been repair welded after breaking into two pieces longitudinally in a prior incident, using cast iron as weld metal. The repair weld bead on both surfaces missed the fracture over 15 to 20% of their lengths. The incomplete repair weld and brittleness of the weld metal and heat-affected zones led to the failure.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001770
EISBN: 978-1-62708-241-9
...” cracks in base metal, and (b) cracks in weld bead and HAZ (magnification: 5×) Fig. 1 Pictures of ( a ) AISI 304 SS styrene storage tank with severe cracks and leakage near the tank base, ( b ) cracks near the weld bead and reinforced plate, and ( c ) cracks in base plate initiating from...
Abstract
A storage tank had been in service at a petrochemical plant for 13 years when inspectors discovered cracks adjacent to weld joints and in the base plate near the foundation. The tank was made from AISI 304 stainless steel and held styrene monomer, a derivative of benzene. The cracks were subsequently welded over with 308 stainless steel filler wire and the base plate was replaced with new material. Soon after, the tank began leaking along the weld bead, triggering a full-scale investigation; spectroscopy, optical and scanning electron microscopy, fractography, SEM-EDS analysis, and microhardness, tensile, and impact testing. The results revealed transgranular cracks in the HAZ and base plate, likely initiated by stresses developed during welding and the presence of chloride from seawater used in the plant. It was also found that the repair weld was improperly done, nor did it include a postweld heat treatment to remove weld sensitization and minimize residual stresses.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089738
EISBN: 978-1-62708-235-8
... Abstract While undergoing vibration testing, a type 347 stainless steel inlet header for a fuel-to-air heat exchanger cracked in the header tube adjacent to the weld bead between the tube and header duct. Investigation (visual inspection and liquid penetrant inspection) supported the conclusion...
Abstract
While undergoing vibration testing, a type 347 stainless steel inlet header for a fuel-to-air heat exchanger cracked in the header tube adjacent to the weld bead between the tube and header duct. Investigation (visual inspection and liquid penetrant inspection) supported the conclusion that the crack in the header tube was the result of a stress concentration at the toe of the weld joining a doubler collar to the tube. The stress concentration was caused by undercutting from poor welding technique and an unfavorable joint design that did not permit a good fit-up. Recommendations included manufacturing the doubler collar so that it could be placed in intimate contact with the header duct, and a revised weld procedure was recommended to result in a smaller, controlled, homogeneous weld joint with less distortion.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001223
EISBN: 978-1-62708-233-4
... been applied. Microscopic examination showed grain disintegration was promoted by the thickness of the weld bead and the amount of heat required to produce it. If nonstabilized austenitic sheet is to be used in the future, one of the particularly low-carbon steels, X2 CrNi 18 9 or X2 CrNiMo 18 10...
Abstract
The corner of a welded sheet construction made from austenitic corrosion-resistant chromium-nickel steel showed corrosive attack of the outer sheet. This attack was most severe at the points subjected to the greatest heat during welding. Particularly large amounts of weld metal had been applied. Microscopic examination showed grain disintegration was promoted by the thickness of the weld bead and the amount of heat required to produce it. If nonstabilized austenitic sheet is to be used in the future, one of the particularly low-carbon steels, X2 CrNi 18 9 or X2 CrNiMo 18 10, is recommended.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001323
EISBN: 978-1-62708-215-0
... Fig. 1 U-bend samples T2, T3, and T4 are shown as received for analysis in (a), while samples 1T and 4T are shown in (b). Arrow in (b) points to location of a hole in U-bend 4T. Fig. 2 The gouging (arrow) observed after the heavy internal deposit was removed by bead blasting from U...
Abstract
Original carbon steel and subsequent replacement austenitic stainless steel superheater tube U-bend failures occurred in a waste heat boiler. The carbon steel tubes had experienced metal wastage in the form of caustic corrosion gouging, while the stainless steel tubes failed by caustic-induced stress-corrosion cracking. Sodium was detected by EDS in the internal deposits and the base of a gouge in a carbon steel tube and in the internal deposits of the stainless steel tube. The sodium probably formed sodium hydroxide with carryover moisture and caused the gouging, which was further aggravated by the presence of silicon and sulfur (silicates and sulfates). It was recommended that the tubes be replaced with Inconel 600 or 601, as a practical option until the carryover problem could be solved.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001837
EISBN: 978-1-62708-241-9
... Radiograph of welded part showing cracks adjacent to the weld bead Fig. 2 Location and morphology of cracks as revealed by dye penetrant testing Fig. 11 Microhardness values in different zones of weld joint as taken on reference specimen, i.e. without cracks, are (a) weld zone 345–355 HV...
Abstract
This case study describes the failure analysis of a steel nozzle in which cracking was observed after a circumferential welding process. The nozzle assembly was made from low-carbon CrMoV alloy steel that was subsequently single-pass butt welded using gas tungsten arc welding. Although no cracks were found when the welds were visually inspected, X-ray radiography showed small discontinuous surface cracks adjacent to the weld bead in the heat affected zone. Further investigation, including optical microscopy, microhardness testing, and residual stress measurements, revealed that the cracks were caused primarily by the presence of coarse untempered martensite in the heat affected zone due to localized heating. The localized heating was caused by high welding heat input or low welding speed and resulted in high transformation stresses. These transformation stresses, working in combination with thermal stresses and constraint conditions, resulted in intergranular brittle fracture.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046991
EISBN: 978-1-62708-234-1
... weatherproofing. On-site visual examination and magnetic testing indicated severe external corrosion of most of the piping. The system showed extensive cracking in weld HAZ. One specimen indicated that corrosion extended to a depth of 3.2 mm and cracks were seen at the edge of the cover bead and in the HAZ...
Abstract
The outlet-piping system of a steam-reformer unit failed by extensive cracking at four weld locations. The welded system consisted of Incoloy 800 (Fe-32Ni-21Cr-0.05C) pipe and fittings. The exterior surfaces of the system were insulated with rock wool that did not contain weatherproofing. On-site visual examination and magnetic testing indicated severe external corrosion of most of the piping. The system showed extensive cracking in weld HAZ. One specimen indicated that corrosion extended to a depth of 3.2 mm and cracks were seen at the edge of the cover bead and in the HAZ of the weld. Metallographic examination showed that cracking was intergranular and that adjacent grain boundaries had undergone deep intergranular attack. Examination at higher magnification revealed heavy carbide precipitation, primarily at grain boundaries, indicating that the alloy had been sensitized, which resulted from heating during welding. Electron probe x-ray microanalysis showed the outside surface of the tube did not have the protective chromium oxide scale normally found on Incoloy 800. The inside surface of the tube had a thin chromium oxide protective scale. This evidence supported the conclusions that the deep oxidation greatly decreased the strength of the weld HAZ and cracking followed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048846
EISBN: 978-1-62708-234-1
..., oriented about normal to the outside surface, and had a dark oxidized appearance. The cracking was found to be predominantly intergranular. Distinct shiny bands that etched slower than the remainder of the sample at the top of each individual weld bead were revealed by microscopic examination. These bands...
Abstract
A main steam pipe was found to be leaking due to a large circumferential crack in a pipe-to-fitting weld in one of two steam leads between the superheater outlet nozzles and the turbine stop valves (a line made of SA335-P22 material). The main crack surface was found to be rough, oriented about normal to the outside surface, and had a dark oxidized appearance. The cracking was found to be predominantly intergranular. Distinct shiny bands that etched slower than the remainder of the sample at the top of each individual weld bead were revealed by microscopic examination. These bands were found contain small cracks and microvoids. A mechanism of intergranular creep rupture at elevated temperature was identified as a result of a series of stress-rupture and tensile tests. It was revealed by the crack shape that cracking initiated on the pipe exterior, then propagated inward and in the circumferential direction in response to a bending moment load. It was concluded that the primary cause of failure was the occurrence of bending stresses that exceeded the stress levels predicted by design calculations and that were higher than the maximum allowable primary membrane stress.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001304
EISBN: 978-1-62708-215-0
...Chemistries of two-pass weld between Corten and type 405 stainless steel, wt% Table 1 Chemistries of two-pass weld between Corten and type 405 stainless steel, wt% Component Cr Mn Fe Ni Internal bead 15.35 0.41 80.27 3.97 External bead 15.39 0.37 80.25 3.98...
Abstract
An exhaust diffuser assembly failed prematurely in service. The failure occurred near the intake end of the assembly and involved fracture in the diffuser cone (Corten), diffuser in take flange (type 310 stainless steel), diffuser exit flange (type 405 stainless steel), expansion bellows (Inconel 600), and bellows intake flange (Corten). Individual segments of the failed subassemblies were examined using various methods. The analysis indicated that the weld joint in the diffuser intake flange (type 310 stainless steel to Corten steel) contained diffusion-zone solidification cracks. The joints had been produced using the mechanized gas-metal arc welding process. Cracking was attributed to improper control of welding parameters, and failure was attributed to weld defects.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001669
EISBN: 978-1-62708-229-7
... Abstract As the result of a leak detected in a plate-formed header at PENELEC'S Shawville Unit No. 3, an extensive failure investigation was initiated to determine the origin of cracking visible along the longitudinal weld seam. Fabricated from SA387-D material and designed for a superheater...
Abstract
As the result of a leak detected in a plate-formed header at PENELEC'S Shawville Unit No. 3, an extensive failure investigation was initiated to determine the origin of cracking visible along the longitudinal weld seam. Fabricated from SA387-D material and designed for a superheater outlet temperature of 566 deg C, the 11.4 cm thick header had operated for approximately 187,000 h at the time of the failure. Discussion focuses on the results of a metallographic examination of boat samples removed from the longitudinal seam weldment in the vicinity of the failure and at other areas of the header where peak temperatures were believed to have been reached. The long-term mechanical properties of the service-exposed base metal and creep-damaged weld metal were determined by creep testing. Based on the utility's decision to replace the header within one to three years, an isostress overtemperature lead specimen approach was taken, whereby failure of a test specimen in the laboratory would precede failures in the plant. These tests revealed approximately a 2:1 difference in life for the base metal as compared to weld metal.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003509
EISBN: 978-1-62708-180-1
... indications that are found by nondestructive testing methods. Surface features that are causes for rejection include: Excessive mismatch at the weld joint Excessive bead convexity and bead reinforcement Excessive bead concavity, underfill, and undersized welds Sharp undercut and overlap...
Abstract
This article briefly reviews the general causes of weldment failures, which may arise from rejection after inspection or failure to pass mechanical testing as well as loss of function in service. It focuses on the general discontinuities observed in welds, and shows how some imperfections may be tolerable and how the other may be root-cause defects in service failures. The article explains the effects of joint design on weldment integrity. It outlines the origins of failure associated with the inherent discontinuity of welds and the imperfections that might be introduced from arc welding processes. The article also describes failure origins in other welding processes, such as electroslag welds, electrogas welds, flash welds, upset butt welds, flash welds, electron and laser beam weld, and high-frequency induction welds.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001176
EISBN: 978-1-62708-229-7
... reduced in bulk from the inside and covered with a thick crumbling layer of magnetic iron oxide (Fe3-O4). This was a corrosion product resulting from the operation of the boiler. In addition, it was decarburized from the inside, and interspersed with grain boundary cracks. This form of attack is typical...
Abstract
A backwell tube situated in the combustion chamber of a 100 atm boiler, which had been in service for many years, failed. The temperature of the saturated steam was about 300 deg C. Two pipe sections with attacked areas in the circumferential welding joint were examined for cause of failure. First section showed strong pit or trench-like attack in the welding seam on the inner surface. A bluish-black corrosion product adhered to the pits. The second section showed small blisters at the welding seam. The metallographic examination of the first section showed welding seam was strongly reduced in bulk from the inside and covered with a thick crumbling layer of magnetic iron oxide (Fe3-O4). This was a corrosion product resulting from the operation of the boiler. In addition, it was decarburized from the inside, and interspersed with grain boundary cracks. This form of attack is typical for the decarburization of steel by high-pressure hydrogen. Hence, the defects in the pipe sections were the result of scaling during the operation of the steam boiler. It was recommended to avoid unnecessary overheating during the welding of materials for high-pressure steam boiler operations.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c0047529
EISBN: 978-1-62708-230-3
... of the undercut, which was an inherent stress raiser. Recommendations included revised joint design to ensure full root penetration. Fillet welds Heat affected zone Joint design Papermaking Shells (structural forms) Steam preheaters Weld defects Welded steel (Steel, general) Joining-related failures...
Abstract
A weld that attached the head to the shell of a preheater containing steam at 1.4 MPa (200 psi) and was used in the manufacture of paper cracked in service. The original joint contained a 6.4 by 50 mm backing ring that had been tack welded to the inside surface of the shell in a position to project beyond the fully beveled top edge of the shell. The projecting edge of the ring fitted against a deep undercut on the inner corner of the rim of the head. The internal 90-deg angle in this undercut was sharp, with almost no fillet. A bevel from the lower edge of the undercut to the outside of the head completed the groove for the circumferential attachment weld. Investigation (visual inspection and actual size views etched in hot 50% hydrochloric acid) supported the conclusion that cracking occurred in the HAZ in the head of the original design, originating in the sharp corner of the undercut, which was an inherent stress raiser. Recommendations included revised joint design to ensure full root penetration.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001276
EISBN: 978-1-62708-215-0
... erosion damage. The exact cause of the erosion could not be determined by the appearance of the piping. Probable causes of the erosion include an excessively high velocity flow through the piping, extremely turbulent flow, and/or intrusions (weld backing rings or weld bead protrusions) on the internal...
Abstract
The carbon steel feedwater piping at a waste-to-energy plant was suffering from wall thinning and leaking after being in service for approximately six years. Metallographic examination of ring sections removed front the piping revealed a normal microstructure consisting of pearlite and ferrite. However, the internal surface on the thicker regions of the rings exhibited significant deposit buildup, where the thinned regions showed none. No significant corrosion or pitting was observed on either the internal or external surface of the piping. The lack of internal deposits on the affected areas and the evidence of flow patterns indicated that the wall thinning and subsequent failure were caused by internal erosion damage. The exact cause of the erosion could not be determined by the appearance of the piping. Probable causes of the erosion include an excessively high velocity flow through the piping, extremely turbulent flow, and/or intrusions (weld backing rings or weld bead protrusions) on the internal surface of the pipes. Increasing the pipe diameter and decreasing the intrusions on the internal surface would help to eliminate the problem.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0047512
EISBN: 978-1-62708-219-8
...) to 7 deg C (45 deg F) that night. The column was shop fabricated in 12 m (40 ft) long sections of 19 mm (3/4 in.) thick steel plate of ASTM A36 steel. Crack initiation was caused by high residual stress during girth welding, and the presence of notches formed by the termination of the incomplete welds...
Abstract
During construction of a revolving sky-tower observatory, a 2.4 m (8 ft) diam cylindrical column developed serious circumferential cracks overnight at the 14 m (46 ft) level where two 12 m (40 ft) sections were joined by a girth weld. The temperatures ranged from 12 deg C (53 deg F) to 7 deg C (45 deg F) that night. The column was shop fabricated in 12 m (40 ft) long sections of 19 mm (3/4 in.) thick steel plate of ASTM A36 steel. Crack initiation was caused by high residual stress during girth welding, and the presence of notches formed by the termination of the incomplete welds. Continuation of the cracks was attributed to the brittle condition of the steel when cooled by the night air. A steel with a much lower ductile-to-brittle transition temperature is essential for this type of structure. Other necessary steps include better control of the girth-welding, choice of a more favorable electrode to avoid porosity, careful termination of all welds to avoid formation of notches, and completion of all welds before other sections of the column are erected.
1