Skip Nav Destination
Close Modal
Search Results for
bars
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 310 Search Results for
bars
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001218
EISBN: 978-1-62708-234-1
... Abstract Screens made of stainless steel X5 Cr-Ni-Mo 18 10 (Material No. 1.4401), which were exposed to cooling water from the mouth of a river, became unserviceable after a few months because of the breaking out of parts of the bars. The multiple fracturing of the screen bars in the brackish...
Abstract
Screens made of stainless steel X5 Cr-Ni-Mo 18 10 (Material No. 1.4401), which were exposed to cooling water from the mouth of a river, became unserviceable after a few months because of the breaking out of parts of the bars. The multiple fracturing of the screen bars in the brackish water of the mouth of the river was attributed to stress corrosion and pitting. The steel used, which contained molybdenum, would have withstood the severe corrosive conditions in the heat-treated condition, i.e. quenched after high temperature anneal. However, the stresses caused by deformation and welding, as well as the intensification of corrosive conditions brought about by design, i.e. creation of corrosion currents in the poorly aerated gaps (Evans elements), made this impossible.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001213
EISBN: 978-1-62708-220-4
... Abstract Fragments of screen bars which as structural elements of a condenser had come into contact with cooling water from the mouth of a river were received. The screen bars were made of stainless austenitic Cr-Ni-Mo steel X 5 Cr-Ni-Mo18 10 (Material No. 1.4401). The bars were fractured...
Abstract
Fragments of screen bars which as structural elements of a condenser had come into contact with cooling water from the mouth of a river were received. The screen bars were made of stainless austenitic Cr-Ni-Mo steel X 5 Cr-Ni-Mo18 10 (Material No. 1.4401). The bars were fractured repeatedly. The ruptures did not occur exclusively or even preferentially at the loops, but just as frequently at locations between them. The mistake made in this case was annealing the steel at a temperature in the critical region. This was probably done to relieve stresses that originated during cold-forming and led to damage by stress corrosion. This would have been the correct method for a ferritic steel, but not austenitic steel, which requires the special heat treatment indicated. When an anneal in the critical region is unavoidable and the indicated additional treatment is impossible or difficult, a type of steel has to be chosen which is resistant to intergranular corrosion.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047161
EISBN: 978-1-62708-235-8
... Abstract Routine magnetic-particle inspection revealed crack indications in a number of shafts produced from hot-rolled 4130 steel bar. A pronounced indication of this size is cause for rejection if the defect is not eliminated during subsequent machining. A microstructural analysis...
Abstract
Routine magnetic-particle inspection revealed crack indications in a number of shafts produced from hot-rolled 4130 steel bar. A pronounced indication of this size is cause for rejection if the defect is not eliminated during subsequent machining. A microstructural analysis of the shaft cross section revealed that the crack was approximately 0.5 mm (0.020 in.) deep and oriented in a radial direction. Furthermore, no stringer-type nonmetallic inclusions were observed in the vicinity of the flaw, which did not display the intergranular characteristics of a quench crack. The defect did, however, contain substantial amounts of oxide, which evidently resulted from the hot-working operation. This evidence supports the conclusion that the appearance of this discontinuity, with the long axis parallel to the working direction and radial orientation with regard to depth, strongly suggests a seam produced during rolling. Use of components with surface-defect indications as small as 0.5 mm (0.02 in.) can be risky in certain circumstances. Depending on the orientation of the flaw with respect to applied loads, the nature of the applied forces (for example, cyclic), and the operating environment, such a surface flaw can become the initiating site for a fatigue crack or a corrosion-related failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001460
EISBN: 978-1-62708-221-1
... Abstract Tie bars of a dragline excavator each consisted of a rectangular section steel bar to which eye-pieces, to facilitate anchorage, were attached by butt-welds. Failure of one weld in each bar after seven years of service allowed the boom to fall and become extensively damaged...
Abstract
Tie bars of a dragline excavator each consisted of a rectangular section steel bar to which eye-pieces, to facilitate anchorage, were attached by butt-welds. Failure of one weld in each bar after seven years of service allowed the boom to fall and become extensively damaged. The appearance of the fracture faces of the two welds showed partial-penetration joints. Failure in each bar had taken place through the weld metal. The presence of built-in cracks introduced zones of stress concentration and the fluctuating loads to which the ties were subjected in service served to initiate fatigue cracks. While the partial-penetration type of weld may be tolerated in a component subjected to bending stresses it is undesirable in one that is required to withstand fluctuating tensile stresses.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001109
EISBN: 978-1-62708-214-3
...Chemical analysis of corrosion products on the grate bars Table 1 Chemical analysis of corrosion products on the grate bars Grate bar Composition, mol% Cl − (a) SO 4 − 2 K + Na (b) Ca + Mg + Si K/Na HH:∼2 weeks in service (short exposure) Outer scale...
Abstract
Grate bars in the traveling grate indurators in several taconite processing units suffered excessive corrosion following a conversion from acid to fluxed pellet production procedures. The campaign life of the HH grade cast stainless steel bars was reduced from more than 7 years to approximately 9 months. Several corroded grate bars were examined metallographically and by electron microscopy to determine the causes of the accelerated corrosion. Chemical and X-ray diffraction analyses were also conducted, along with simulation tests to assess the role of alkali chlorides in the corrosion process. The basic cause of degradation was found to be hot corrosion caused by the deposition of alkali sulfates and chlorides. However this degradation may have been aggravated by thermal cycling and abrasion. The source of the salt was impurities in the flux. Two potential solutions were proposed: modification of the processing parameters to reduce the salt deposition and / or change of bar materials to a more resistant alloy.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001131
EISBN: 978-1-62708-214-3
... Fig. 1 Macrograph of longitudinal crack in bar. 1.5×. Fig. 2 Oxide is present on the fracture surface. 2% nital etch. 100×. Abstract Two 25 x 40 mm (1 x 1.5 in.) AISI 4150 hot-rolled steel bars that cracked during heat treatment were examined to determine whether the heat...
Abstract
Two 25 x 40 mm (1 x 1.5 in.) AISI 4150 hot-rolled steel bars that cracked during heat treatment were examined to determine whether the heat treating procedure had contributed to the failure. Metallographic examination of a cross section taken through the fracture revealed an oxide coating on both sides of the fracture surface. The oxide was also found on the top and bottom sides of the sample. Sawcut sides of the bar did not exhibit the oxide layer The presence of the oxide in the fracture, combined with its absence on all exterior surfaces, indicated that the fracture occurred as a result of an oxide seam in the original material rather than from oxide from heat treating. Nondestructive testing prior to machining and heat treatment was recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001261
EISBN: 978-1-62708-219-8
... Abstract A ceiling in a concrete structure was hung on flat bars with a cross section of 30 x 80 mm. The bars were borne by a slit steel plate and supported by tabs that were welded onto the flat sides. One of the bars fractured during mounting when it was dropped from a height of about 1 m...
Abstract
A ceiling in a concrete structure was hung on flat bars with a cross section of 30 x 80 mm. The bars were borne by a slit steel plate and supported by tabs that were welded onto the flat sides. One of the bars fractured during mounting when it was dropped from a height of about 1 m onto the opposite support. The fracture was a grainy forced rupture that propagated from one of the fillet welds. Investigation showed a steel was selected for this important construction that was prone to aging and that in fact had aged through cold deformation during straightening and then was welded yet. The bar could withstand mounting and subsequent static loading as long as it was treated with care, as could be expected from the good deformation characteristics of the static tensile test. The question is, however, whether occasional impacts or shocks can be assuredly avoided. This risk could have been eliminated if a killed steel of quality groups 2 or 3 according to DIN 17 100 had been used.
Image
in Screen Bars Destroyed by Intergranular Corrosion
> ASM Failure Analysis Case Histories: Chemical Processing Equipment
Published: 01 June 2019
Fig. 1 Fractured screen bars. 1 ×
More
Image
in Fractures of Flat Wire Conveyor Belt Links of Glass Annealing Furnaces
> ASM Failure Analysis Case Histories: Material Handling Equipment
Published: 01 June 2019
Fig. 1 View of cross bars of conveyor belt. 1 ×
More
Image
in Fractures of Flat Wire Conveyor Belt Links of Glass Annealing Furnaces
> ASM Failure Analysis Case Histories: Material Handling Equipment
Published: 01 June 2019
Fig. 2 Longitudinal sections through cross bars. Etch: Nital. 3 ×
More
Image
in Brittleness in Copper and Copper Alloys With Particular Reference to Hydrogen Embrittlement
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 9 Section through one of the fractured bars shown in figure 8 . (× 35).
More
Image
in Brittleness in Copper and Copper Alloys With Particular Reference to Hydrogen Embrittlement
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 16 Failure of bars at junction to end ring.
More
Image
in Brittleness in Copper and Copper Alloys With Particular Reference to Hydrogen Embrittlement
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 25 Failure of bars of a.c. Motor at brazed ends.
More
Image
in Brittleness in Copper and Copper Alloys With Particular Reference to Hydrogen Embrittlement
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 26 Section through incipient cracks in unbroken bars. (× 3.5).
More
Image
in Failures of Jib Tie-Bar Components of Tower Cranes Manufactured from Rimming Steel
> ASM Failure Analysis Case Histories: Construction, Mining, and Agricultural Equipment
Published: 01 June 2019
Fig. 2 Typical sulphur prints from part cross sections fo bars of rimming steel (above) and killed steel (below)
More
Image
in Failure Analysis of Torsion Bar of Projectile Weaving Machine
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 3 Failed bars
More
Image
in Failure Analysis of Torsion Bar of Projectile Weaving Machine
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 4 Fractured zones of bars
More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001810
EISBN: 978-1-62708-241-9
...Hardness values of torsion bars Table 1 Hardness values of torsion bars HRC 1 2 3 Mean Bar 1 46.0 45.7 43.8 45.16 Bar 2 46.2 45.7 47.4 46.43 Bar 3 45.0 44.8 46.4 45.40 Chemical analyses of 50CrV4 spring steel according to EN10132-4 Table 2 Chemical...
Abstract
Several torsion bars had failed in a projectile weaving machine and were analyzed to determine the cause. Specimens prepared from the damaged components were subjected to visual inspection, hardness testing, chemical analysis, and metallurgical evaluations. The failed torsion bars had been fabricated from spring steel which, according to stress calculations, did not have sufficient torsional strength. Examination of the damaged parts confirmed the finding, revealing that all fractures started at a shoulder radius in an area of high stress concentration. Based on the investigation, the shoulder radius should be increased to alleviate stress and the working torsion angle of the bar should be decreased to improve safety factors.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0047307
EISBN: 978-1-62708-223-5
... Abstract An impact breaker bar showed signs of rapid wear. The nominal composition of this chromium alloy cast iron was Fe-2.75C-0.75Mn-0.5Si-0.5Ni-19.5Cr-1.1Mo. The measured hardness of this bar was 450 to 500 HRB. The desired hardness for this material after air hardening is 600 to 650 HRB...
Abstract
An impact breaker bar showed signs of rapid wear. The nominal composition of this chromium alloy cast iron was Fe-2.75C-0.75Mn-0.5Si-0.5Ni-19.5Cr-1.1Mo. The measured hardness of this bar was 450 to 500 HRB. The desired hardness for this material after air hardening is 600 to 650 HRB. The microstructure consisted of eutectic chromium carbides (Cr7C3) in a matrix of retained austenite and martensite intermingled with secondary carbides. Analysis (visual inspection and 500x view of sections etched with Marble's reagent) supported the conclusion that the low hardness resulted from an excessive amount of retained austenite. This caused reduced wear resistance and thus rapid wear in service. Recommendations included avoiding an excessive austenitizing temperature and excessive cooling rates from the austenitizing temperature and controlling the chemical composition to avoid excessive hardenability for the section size involved.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001283
EISBN: 978-1-62708-215-0
...Results of chemical analysis Table 1 Results of chemical analysis Element Composition, % Bar stock L77 specification Copper 3.96–4.09 3.9–5.0 Magnesium 0.36–0.56 0.2–0.8 Silicon 0.62–0.76 0.5–0.9 Manganese 0.52–0.61 0.4–1.2 Titanium + Zirconium 0.017 0.2...
Abstract
During the preproduction stages of forging, an initial batch of 50 mm (2 in.) diam Al-4Cu alloy (L77) extruded bar stock material was found to be cracking randomly. Failure analysis was conducted to determine the metallurgical factors underlying the phenomenon. Microexamination of sections across the defects revealed intergranular cracks tracing a path of round, segregated particles and oxide film discontinuities. The segregated particles were rich in copper It was concluded that the cracking was the result of segregations occurring in poor-quality raw material. The source of segregation was suspected to be the use of improperly made master alloys. Use of improved melting techniques and proper master alloys was recommended.
1