Skip Nav Destination
Close Modal
Search Results for
ball bearing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 131 Search Results for
ball bearing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001754
EISBN: 978-1-62708-241-9
... The Gearbox components were received disassembled and separated in bags. The parts were photographed in the as-received condition for documentation purposes. The components of interest to this investigation are shown in Fig. 1 . The outer race (OR), inner race (IR), and rolling elements (bearing balls) were...
Abstract
The case study presented in this article details the failure investigation of an M50 alloy steel bearing used in a jet engine gearbox drive assembly. It discusses the investigative steps and analytic tools used to determine the root cause, highlighting the importance of continuous, thorough questioning by the investigating activity. The combined analyses demonstrated that the bearing failed by a single event overload as evidenced by bulk deformation and traces of foreign material on the rolling elements. The anomalous transferred metal found on the rolling elements subsequently led to the discovery of overlooked debris in an engine chip detector, and thus resulted in a review of several maintenance practices.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001755
EISBN: 978-1-62708-241-9
... Abstract An aero engine failed due to the misalignment of the ball bearing fitted on the main shaft of the engine. The aero engine incorporates two independent compressors: a six-stage axial flow LP compressor and a nine-stage axial flow HP compressor. The bearing under consideration is a HP...
Abstract
An aero engine failed due to the misalignment of the ball bearing fitted on the main shaft of the engine. The aero engine incorporates two independent compressors: a six-stage axial flow LP compressor and a nine-stage axial flow HP compressor. The bearing under consideration is a HP location bearing and is fitted at the rear of the nine-stage compressor. It was supposed to operate for at least 5000 h, but failed catastrophically after 1300 h, rendering the engine unserviceable. Unusually high stresses caused by misalignment and uneven axial loading resulted in the generation of fatigue crack(s) in the inner race. When the crack reached the critical size, the collar of the race fractured, causing subsequent damage. The cage also failed due to excessive stresses in the axial direction, and its material was smeared on the steel balls and the outer race.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047956
EISBN: 978-1-62708-235-8
... Abstract Randomly selected dictating-machine drive mechanisms, which contained small ball bearings, were found to exhibit unacceptable fluctuations in drive output during the early stages of production. It was indicated that the bearing raceways were being true brinelled before or during...
Abstract
Randomly selected dictating-machine drive mechanisms, which contained small ball bearings, were found to exhibit unacceptable fluctuations in drive output during the early stages of production. It was indicated that the bearing raceways were being true brinelled before or during installation of the bearings. The preinstallation practices and the procedures for installing the bearings were carefully studied. It was revealed that during one preinstallation step, the lubricant applied by the bearing manufacturer was removed and the bearing was relubricated with another type of lubricant prior to which the bearings were ultrasonically cleaned in trichloroethylene to ensure extreme cleanness. Equally spaced indentations resembling true brinelling were revealed by careful examination of the bearing raceways. It was concluded that the ultrasonic energy transmitted to the balls brinelled the raceways enough to cause fluctuations in machine output. Solvent-vapor cleaning was employed as a corrective technique for removing bearing lubricant.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001795
EISBN: 978-1-62708-241-9
... Abstract A ball bearing in a military jet engine sustained heavy damage and was analyzed to determine the cause. Almost all of the balls and a portion of the outer race were found to be flaking, but there were no signs of damage on the inner race and cage. Tests (chemistry, hardness...
Abstract
A ball bearing in a military jet engine sustained heavy damage and was analyzed to determine the cause. Almost all of the balls and a portion of the outer race were found to be flaking, but there were no signs of damage on the inner race and cage. Tests (chemistry, hardness, and microstructure) indicated that the bearing materials met the specification requirements. However, closer inspection revealed areas of discoloration, or nonuniform contact marks, on the ID surface of the inner ring. The unusual wear pattern suggested that the bearing was not properly mounted, thus subjecting it to uneven or eccentric loading. This explains the preferential nature of the flaking on the outer race and points to an assembly error as the root cause of failure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047975
EISBN: 978-1-62708-225-9
... of the transmission. The center bearing of the transmission input-shaft ball-bearing stack had a broken cage and one ball was found to have been split into several pieces. Several scored balls and flaking damage in the raceways of the inner and outer rings was observed. The origin (area in rectangle) was oriented...
Abstract
An aircraft was grounded when illumination of the transmission oil-pressure light and an accompanying drop in pressure on the oil-pressure gage was reported by the pilot. No discrepancy in the bearing assemblies and related components was revealed by teardown analysis of the transmission. The center bearing of the transmission input-shaft ball-bearing stack had a broken cage and one ball was found to have been split into several pieces. Several scored balls and flaking damage in the raceways of the inner and outer rings was observed. The origin (area in rectangle) was oriented axially in the raceway and was flanked by areas of markedly different-textured flaking damage. Stringers of nonmetallic inclusions were revealed at the origin during metallographic examination of a section parallel to the axially oriented origin. Thus it was concluded that the failure was caused by contact fatigue mechanism (flaking) activated by the subsurface nonmetallic inclusions.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001900
EISBN: 978-1-62708-225-9
... Abstract Incorrect grounding of an electric motor resulted in electric current passing through a 52100 steel ball bearing and caused multiple arcing between the rolling elements. The multiple arcing developed a pattern on the outer race known as ‘fluting’. A section of ball race outer showed...
Abstract
Incorrect grounding of an electric motor resulted in electric current passing through a 52100 steel ball bearing and caused multiple arcing between the rolling elements. The multiple arcing developed a pattern on the outer race known as ‘fluting’. A section of ball race outer showed the distinct banding (fluting) resulting from spark discharges while the bearing was rotating. The severe distress of the surface resulted in unacceptable levels of vibration. An SEM photograph of the banded regions showed smoothing of the asperities from continued operation is evident. In the craters the residue of partial melting was seen.
Image
Published: 01 January 2002
Fig. 6 Weld spots on contact surfaces of a type 440C stainless steel ball bearing. The spots are caused by static electrical discharges resulting from use of an electrically nonconductive grease. (a) and (b) Photographs of inner-raceway surface. 10 and 100×, respectively. (c) and (d) SEM
More
Image
Published: 01 January 2002
Fig. 21 Inner-ring raceway of an aircraft-transmission ball bearing that failed by rolling-contact fatigue because of subsurface nonmetallic inclusions. (a) Macrograph of inner-ring raceway showing fine-texture flaking damage (arrow A), coarse-texture flaking damage (arrow B), and origin
More
Image
Published: 01 January 2002
Fig. 28 52100 steel jet-engine ball bearing that failed because of overheating resulting from misalignment. (a) Photograph of bearing components showing fractured cage. (b) Enlarged view of cage showing damage caused by scoring, scuffing, and plastic deformation around ball pockets
More
Image
in Thrust Bearing Failure Leading to the Destruction of a Propeller Rotor
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 10 Micrograph of a section of ball bearing. Severe deformation, smearing, and microstructural changes are evident. 16.75×
More
Image
in Failures of Rolling-Element Bearings and Their Prevention
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 21 Developed inner ring showing the 6205 ball-bearing contact ellipses under the same loads. Note that only three rolling elements sustain the load.
More
Image
in Failures of Rolling-Element Bearings and Their Prevention
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 23 Plastic deformation on deep-groove ball-bearing shoulders resulting from inadequate mounting. Source: Ref 24
More
Image
in Failures of Rolling-Element Bearings and Their Prevention
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Image
in Failures of Rolling-Element Bearings and Their Prevention
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 41 Rest corrosion on the outer race of a deep-groove ball bearing due to humidity and improper storage. Note the equidistant tracks of rest corrosion that may act as initiators for surface fatigue cracks. Source: Ref 24
More
Image
in Failures of Rolling-Element Bearings and Their Prevention
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 48 (a) Subsurface-initiated fatigue in a deep-groove ball bearing, axially loaded by thermal dilatation. (b) Resultant spalling severely damaged one of the balls.
More
Image
in Failures of Rolling-Element Bearings and Their Prevention
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 56 Inner-ring raceway of an aircraft-transmission ball bearing that failed by rolling-contact fatigue because of subsurface nonmetallic inclusions. (a) Macrograph of inner-ring raceway showing fine-textured flaking damage (arrow A), coarse-textured flaking damage (arrow B), and origin
More
Image
in Failures of Rolling-Element Bearings and Their Prevention
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 62 Double-row angular-contact ball bearing that cracked due to insufficient/improper axial support. The fracture crack originated from the middle of the raceway beyond the loaded zone. This shows the interaction of volumic and Hertzian stresses, which led to breakage of the raceway
More
Image
in Failures of Rolling-Element Bearings and Their Prevention
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 67 An AISI 52100 (100Cr6 or WN 1.3505) steel jet-engine ball bearing failed due to overheating that resulted from misalignment. (a) Bearing components showing fractured cage. (b) Enlarged view of the cage showing damage (scoring, scuffing, plastic deformation of the ball pockets
More
Image
in A Survey of the Causes of Failure of Rolling Bearings
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
Image
in A Survey of the Causes of Failure of Rolling Bearings
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
1