Skip Nav Destination
Close Modal
By
Friedrich Karl Naumann, Ferdinand Spies
By
A. Nusair Khan, M. Mudassar Rauf, I. Salam, S.H. Khan
Search Results for
bainite
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 119
Search Results for bainite
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
The onset of bainite shows up as a deep etching structure in axle 2 (nital ...
Available to Purchase
in Failure Analysis of Induction Hardened Automotive Axles
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 19 The onset of bainite shows up as a deep etching structure in axle 2 (nital etch)
More
Image
Published: 01 December 2019
Fig. 3 ( a , b ) Optical micrograph of failed socket showing bainite phase ( a ) as compared with that of a better quality unfailed socket showing martensite phase ( b ) at the same magnification (Etchant: 2% Nital)
More
Image
Debonding at the interface of a carbide particle and the matrix in a bainit...
Available to PurchasePublished: 01 January 2002
Fig. 26 Debonding at the interface of a carbide particle and the matrix in a bainitic 4150 steel. Loading direction indicated. Source: Ref 42
More
Image
Debonding associated with a MnS inclusion in a bainitic microstructure. Loa...
Available to Purchase
in Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 10 Debonding associated with a MnS inclusion in a bainitic microstructure. Loading direction indicated. Source: Ref 30
More
Image
Coarse bainitic structure of steel in condition as received, etched with Ni...
Available to Purchase
in Fracture of a Lifting Fork Arm
> ASM Failure Analysis Case Histories: Material Handling Equipment
Published: 01 June 2019
Fig. 2 Coarse bainitic structure of steel in condition as received, etched with Nital. 200 ×
More
Image
Micrograph showing the bainitic microstructure of the turbine disk. Picral ...
Available to PurchasePublished: 01 December 1993
Fig. 4 Micrograph showing the bainitic microstructure of the turbine disk. Picral etch. 315×
More
Image
Upper bainitic structure with aligned grains of unresolved pearlite (black)...
Available to PurchasePublished: 01 June 2019
Fig. 5 Upper bainitic structure with aligned grains of unresolved pearlite (black). 100 ×
More
Image
Debonding at the interface of a carbide particle and the matrix in a bainit...
Available to PurchasePublished: 15 January 2021
Fig. 27 Debonding at the interface of a carbide particle and the matrix in a bainitic 4150 steel. Loading direction indicated. Source: Ref 18
More
Image
Debonding associated with a MnS inclusion in a bainitic microstructure. Loa...
Available to Purchase
in Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
> Failure Analysis and Prevention
Published: 15 January 2021
Fig. 10 Debonding associated with a MnS inclusion in a bainitic microstructure. Loading direction indicated. Source: Ref 30
More
Image
Manganese sulfide inclusions ( arrows ) present in a hardened, bainitic mic...
Available to Purchase
in The Effects of Sulfide Inclusions on Mechanical Properties and Failures of Steel Components
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 5 Manganese sulfide inclusions ( arrows ) present in a hardened, bainitic microstructure
More
Book Chapter
Failure of Brittle Lawn Mower Blades
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0090959
EISBN: 978-1-62708-222-8
... Abstract Mower blades manufactured from grade 1566 high-manganese carbon steel failed a standard 90 deg test. The blades had been austempered and reportedly fractured in a brittle manner during testing. The austempering treatment was intended to produce a bainitic microstructure...
Abstract
Mower blades manufactured from grade 1566 high-manganese carbon steel failed a standard 90 deg test. The blades had been austempered and reportedly fractured in a brittle manner during testing. The austempering treatment was intended to produce a bainitic microstructure, but investigation (visual inspection, 2% nital etched 8.9x/196x images) showed that the typical core microstructure contained alternating bands of martensite and bainite. The conclusion was that the nonuniform microstructure was likely responsible for the atypical brittle behavior of the blades, and the observed structure suggests that the austempering heat treatment was performed too close to the nominal martensite start temperature. Recommendations included raising the austempering salt-bath temperature 56 deg C (100 deg F) to account for localized compositional variation.
Image
Radial marks on tensile test specimen of Society of Automotive Engineers (S...
Available to Purchase
in Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 31 Radial marks on tensile test specimen of Society of Automotive Engineers (SAE) 4150 steel isothermally transformed to bainite, quenched to room temperature, and then tempered. (a) Lower bainite, isothermally transformed at 300 °C (570 °F) for 1 h, tempered at 600 °C (1110 °F) for 48 h
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001196
EISBN: 978-1-62708-224-2
..., 200x micrographs, chemical analysis, and metallographic examination) supported the conclusion that the primary cause of the failure was the brittleness (lack of impact toughness) of the steel. The coarse bainitic microstructure was inadequate for the service application. The microstructure resulted...
Abstract
A forged alloy steel arm of a lifting fork with an approximate cross section of 150 x 240 mm (5.92 x 9.45 in.) fractured after only a short service life on a lift truck. The fracture surface had the appearance of a fracture originating from a surface crack. Analysis (visual inspection, 200x micrographs, chemical analysis, and metallographic examination) supported the conclusion that the primary cause of the failure was the brittleness (lack of impact toughness) of the steel. The coarse bainitic microstructure was inadequate for the service application. The microstructure resulted from either improper heat treatment or no heat treatment after the forging operation. The surface cracks in the lifting-fork arm acted as starter notches (stress raisers), assisting in the initiation of fracture. No recommendations were made.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047830
EISBN: 978-1-62708-235-8
... was identified around one of the folds and a fatigue crack initiated in the fold and propagated across the cheek. Properties representative of 4140 steel, quenched and tempered to a hardness of 20 to 22 HRC, were observed. Tempered bainite was revealed in the general microstructure. As a corrective measure...
Abstract
Textile-machine crankshafts forged from 4140 steel fractured transversely on one cheek during one to three years of service. The cause of failure for two forgings (one complete fractured forging and second a section that contained the shorter shaft fracture cheek) was determined. Indication of fatigue failure was revealed by visual examination of the fracture surfaces. Rough grooves from hot trimming of the flash were visible on the surface of the cheeks. The outer face of one cheek of the throw on the forging contained shallow surface folds. Slightly decarburized forged surface was identified around one of the folds and a fatigue crack initiated in the fold and propagated across the cheek. Properties representative of 4140 steel, quenched and tempered to a hardness of 20 to 22 HRC, were observed. Tempered bainite was revealed in the general microstructure. As a corrective measure, the forgings were normalized, hardened and tempered to 28 to 32 HRC before being machined to increase fatigue strength and extremely rough surfaces were removed by careful grinding.
Book Chapter
Failure of Recuperator with Austenitically Welded Pipes
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001159
EISBN: 978-1-62708-232-7
... coarse-grained and acicular, and the microstructure of the welding seam had become predominantly martensitic as a result of the mixing of the weld metal with the fused pipe material. The chrome steel pipe had become partially transformed to martensite or bainite at the transition to the weld. Thus...
Abstract
A recuperator used for preheating the combustion air for a rolling mill furnace failed after a relatively short service time because of leakage of the pipes in the colder part. The 6 % chrome steel pipes used for the warmer part connected by means of welding with austenitic electrodes to the unalloyed mild steel pipe of larger diam. Visual inspection showed corrosion and deep, trench-like erosion over the entire circumference of the seam on the side of the thicker mild steel pipe. Examination using the V2-A solution for picral etch showed the microstructure of the unalloyed pipe had become coarse-grained and acicular, and the microstructure of the welding seam had become predominantly martensitic as a result of the mixing of the weld metal with the fused pipe material. The chrome steel pipe had become partially transformed to martensite or bainite at the transition to the weld. Thus, the failure occurred due to typical contact corrosion wherein the alloyed welding seam represented the less noble electrode. The martensitic structure may have contributed to the failure as well. Due to the typical nature of the failure, no recommendations were made.
Book Chapter
Rupture of Low-Carbon Steel Boiler Tubes Because of Severe Overheating
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048289
EISBN: 978-1-62708-234-1
.... The microstructure near the rupture edge was revealed by metallographic examination to consist of ferrite and acicular martensite or bainite. The microstructure and the observed lack of cold work indicated a temperature above the transformation temperature of 727 deg C had been reached. Swelling of the tubes...
Abstract
The center portions of two adjacent low-carbon steel boiler tubes (made to ASME SA-192 specifications) ruptured during a start-up period after seven months in service. It was indicated by reports that there had been sufficient water in the boiler two hours before start-up. The microstructure near the rupture edge was revealed by metallographic examination to consist of ferrite and acicular martensite or bainite. The microstructure and the observed lack of cold work indicated a temperature above the transformation temperature of 727 deg C had been reached. Swelling of the tubes was disclosed by the wall thickness and OD of the tubing. The tubes were concluded to have failed due to rapid overheating.
Book Chapter
Failure of a Zinc-Electroplated 1060 Steel Fastener
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0048674
EISBN: 978-1-62708-222-8
... hydrogen. It was revealed that fasteners treated in this manner were brittle due to hydrogen embrittlement as the baking process was found to not be able to remove all the nascent hydrogen which had induced during acid cleaning and electroplating. The heat treatment cycle was modified to produce a bainitic...
Abstract
Fasteners, made in high-production progressive dies from 0.7 mm thick cold-rolled 1060 steel, were used to secure plastic fabric or webbing to the aluminum framework of outdoor furniture. It was found that approximately 30% of the fasteners cracked and fractured as they were compressed to clamp onto the framework prior to springback. The heat treatment cycle of the fasteners consisted of austenitizing, quenching, tempering to obtain a tempered martensite microstructure, acid cleaning, zinc electroplating, coating with a clear dichromate and thereafter baking to remove the nascent hydrogen. It was revealed that fasteners treated in this manner were brittle due to hydrogen embrittlement as the baking process was found to not be able to remove all the nascent hydrogen which had induced during acid cleaning and electroplating. The heat treatment cycle was modified to produce a bainitic structure and the method of plating the fastener with zinc was changed from electroplating to a mechanical deposition process to thus avoid hydrogen embrittlement.
Image
Radial marks on tensile test specimen of SAE 4150 alloy steel isothermally ...
Available to Purchase
in Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
> Failure Analysis and Prevention
Published: 15 January 2021
Fig. 31 Radial marks on tensile test specimen of SAE 4150 alloy steel isothermally transformed to bainite, quenched to room temperature, and tempered. (a) Lower bainite, isothermally transformed at 300 °C (570 °F) for 1 h, tempered at 600 °C (1110 °F) for 48 h. (b) Lower bainite, isothermally
More
Image
Microstructure of failed reheater tube. (a) At away location showing equiax...
Available to Purchase
in Failure of Boilers and Related Equipment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 14 Microstructure of failed reheater tube. (a) At away location showing equiaxed grains of ferrite with partially degraded pearlite/bainite. (b) At rupture showing degraded bainite along the grain boundaries of elongated ferrite and within the grains. Original magnification: 400×
More
Book Chapter
Failure and Stress Analysis of Deformed Steel Tube
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001811
EISBN: 978-1-62708-241-9
... to be homogenous and had no banded structure. However, x-ray diffraction analysis confirmed the presence of up to 6% retained austenite which likely caused the tube to buckle during the 910 °C heat treating procedure. tube buckling retained austenite bainitic steel distortion x-ray diffraction analysis...
Abstract
A deformed steel tube was received for failure analysis after buckling during a heat-treat operation. The tube was subjected to various metallurgical tests as well as nondestructive testing to confirm the presence of residual stresses. The microstructure of the tube was found to be homogenous and had no banded structure. However, x-ray diffraction analysis confirmed the presence of up to 6% retained austenite which likely caused the tube to buckle during the 910 °C heat treating procedure.
1