1-20 of 201 Search Results for

axle

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0046160
EISBN: 978-1-62708-224-2
... Abstract A stepped drive axle (hardened and tempered resulfurized 4150 steel forging) used in a high-speed electric overhead crane (rated at 6800 kg, or 7 tons, and handling about 220 lifts/day with each lift averaging 3625 to 5440 kg, or 4 to 6 tons) broke after 15 months of service. Visual...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001495
EISBN: 978-1-62708-221-1
... Abstract An axle shaft in an open-pit mining truck hauling overburden failed after operating for 27,000 h. Previous failures had resulted from longitudinal shear, but this had not, bringing material quality into question. Chemical analysis verified that the part was SAE4340 Ni-Cr-Mo alloy steel...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001555
EISBN: 978-1-62708-217-4
... Abstract One main undercarriage axle made of high strength alloy steel was subjected to simulated fatigue test for 6000 h of service. After only 300 h it broke in two along the sharp radius. The fracture revealed a coarse, irregular, and brittle surface before final fracture by thick angular...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001719
EISBN: 978-1-62708-231-0
... Liquid copper Locomotive axles ASTM A21 Liquid metal induced embrittlement Failures of locomotive axles have occurred for more than 100 years. These failures are common and often not properly examined with the relevant metallographic tools available. Failures of all types of locomotive axles have...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0047521
EISBN: 978-1-62708-218-1
... Abstract A supplementary axle, which was used as an extension to a highway-trailer tractor to increase its load-bearing capacity, failed in service. The rolled steel channel extensions that secured the axle assembly to the tractor main-frame I-beams fractured transversely, with the crack...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001498
EISBN: 978-1-62708-218-1
... Abstract One end of an axle shaft containing the integral spur pinion was submitted for examination, along with the report of a tooth pitting failure. The spur pinion, integral to the axle shaft, operated in a medium-size, off-highway truck at an open-pit mine, for “a relatively short time...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0089551
EISBN: 978-1-62708-218-1
... Abstract A sand-cast medium-carbon steel heavy-duty axle housing, which had been quenched and tempered to about 30 HRC, fractured after almost 5000 h of service. Investigation (0.4x magnification) revealed that the fracture had been initiated by a hot tear that formed during solidification...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001844
EISBN: 978-1-62708-241-9
... Abstract A cylindrical spiral gear, part of a locomotive axle assembly, cracked ten days after it had been press-fit onto a shaft, after which it sat in place as other repairs were made. Workers at the locomotive shop reported hearing a sound, and upon inspecting the gear, found a crack...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001035
EISBN: 978-1-62708-214-3
... Abstract Following an accident in which a light pickup truck left the road and overturned, one of the rear axles, made of approximately 0.30C steel, was found to be fractured adjacent to the bearing lock nut. A keyway was present in the failed area, as were threads for the lock nut. Fracture...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001040
EISBN: 978-1-62708-214-3
... Abstract Failed portions of a 4140 steel axle from a prototype urban transit vehicle were examined to determine the cause of failure. The testing procedures included visual examination, macrofractography, metallography, chemical analysis, and hardness and tensile testing. The analysis showed...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001822
EISBN: 978-1-62708-180-1
... Abstract This article provides a background of friction-bearing failures due to overheating. The failures of locomotive axles caused by overheated traction-motor support bearings are discussed. The article also describes liquid-metal embrittlement (LME) in steel. It examines the results...
Image
Published: 01 December 2019
Fig. 2 A schematic drawing of the semi-float axle test set up. The stub axle test was similar except that no suspension was involved More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001762
EISBN: 978-1-62708-241-9
... Abstract Rollover accidents in light trucks and cars involving an axle failure frequently raise the question of whether the axle broke causing the rollover or did the axle break as a result of the rollover. Axles in these vehicles are induction hardened medium carbon steel. Bearings ride...
Image
Published: 01 January 2002
Fig. 8 Fitting for attaching dual wheels to a tractor axle that failed when 1045 steel U-bolts in the assembly were overstressed. The bolts failed because of poor hardenability relative to their diameter. More
Image
Published: 01 January 2002
Fig. 1 Fracture surface at the drive-wheel side of axle 1611. More
Image
Published: 01 January 2002
Fig. 2 Fracture surface at the commutator side of axle 1611. More
Image
Published: 01 January 2002
Fig. 3 Fracture surface at the commutator side of axle 2028. More
Image
Published: 01 January 2002
Fig. 8 Macrographs of two polished sections from the failed axles. (a) Axle 1611. (b) Axle 2028. Each was positioned along the fracture at the outside-diameter surface. More
Image
Published: 01 January 2002
Fig. 12 Three views of the microstructure of axle 1611. The specimens were taken from the area near the center at different distances from the fracture face. (a) Near the fracture surface. (b) 6.4 mm (0.25 in.) from the fracture face. (c) 38 mm (1.5 in.) from the fracture face More
Image
Published: 01 January 2002
Fig. 13 Four views of the microstructure of axle 2028. The specimens were taken from the area near the center at different distances from the fracture face. (a) At the fracture surface. (b) At the boundary between the edge structure and the heat-affected structure. (c) At the heat-affected More