Skip Nav Destination
Close Modal
By
Sheng Xu, Le-yu Zhou, Yong-ming Yan, Hong-wu Zhu
By
Xiaolei Xu, Zhiwei Yu, Yuzhen Chen
By
Daniel N. Hopkins, Daniel J. Benac
By
John D. Landes, W.T. Becker, Roch S. Shipley, Julian Raphael
By
Julian Raphael, Roch J. Shipley, John Landes
By
D.K. Rodgers, C.E. Coleman, R.R. Hosbons
By
Y. C. Lin, F. V. Ellis
By
Katsumi Sakaguchi, Masakatsu Kubo
By
Pierre Dupont
By
M.A. Zaccone
Search Results for
axial force
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 120
Search Results for axial force
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001487
EISBN: 978-1-62708-234-1
... of the strip conductor due to centrifugal force. This leads to a high frictional binding force between turns and prevents axial expansion under normal heating in service. Rotor trouble which proved to be due to copper shortening was found in a set rated at 27.5 MW. It was manufactured in 1934 at which time...
Abstract
Copper shortening has been found to occur in the rotor windings of turbo alternators and takes the form of a progressive reduction in the length of the coils leading to distortion of the end windings. The trouble results from the high loading which develops between successive layers of the strip conductor due to centrifugal force. This leads to a high frictional binding force between turns and prevents axial expansion under normal heating in service. Rotor trouble which proved to be due to copper shortening was found in a set rated at 27.5 MW. It was manufactured in 1934 at which time silver-bearing copper was not available. The use of hard-drawn silver-bearing copper for a rewind, in conjunction with special attention to blocking up the end windings, is confidently expected to effect a complete cure.
Book Chapter
Failure Analysis of the 18CrNi3Mo Steel for Drilling Bit
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001787
EISBN: 978-1-62708-241-9
... profiles) and the cumulative effect of torque and force loading (the byproduct of continuous twisting and axial impact). Cracks readily initiate under these conditions then propagate quickly through what was found to be networks of tempered martensite, thus resulting in premature failure. drill bit...
Abstract
A masonry type drill bit, designed for impact drilling in rock, fractured after a short time in service. Samples of the failed bit were analyzed using optical and scanning electron microscopy, quantitative metallography, and chemical analysis. The composition was found to be that of 18CrNi3Mo steel. Investigators also found evidence of inclusions and prior austenite grain size, although it was determined that neither played a role in the failure. Rather, according to test data, the failure occurred because of stress concentration (due to geometric discontinuities along the tooth profiles) and the cumulative effect of torque and force loading (the byproduct of continuous twisting and axial impact). Cracks readily initiate under these conditions then propagate quickly through what was found to be networks of tempered martensite, thus resulting in premature failure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0047681
EISBN: 978-1-62708-229-7
... Abstract A fluorescent liquid-penetrant inspection of an experimental stator vane of a first-stage axial compressor revealed the presence of a longitudinal crack over 50 mm (2 in.) long at the edge of a resistance seam weld. The vane was made of titanium alloy Ti-6Al-4V (AMS 4911). The crack...
Abstract
A fluorescent liquid-penetrant inspection of an experimental stator vane of a first-stage axial compressor revealed the presence of a longitudinal crack over 50 mm (2 in.) long at the edge of a resistance seam weld. The vane was made of titanium alloy Ti-6Al-4V (AMS 4911). The crack was opened by fracturing the vane. The crack surface displayed fatigue beach marks emanating from the seam-weld interface. Both the leading-edge and trailing-edge seam welds exhibited weld-metal expulsions up to 3.6 mm (0.14 in.) in length. Metallographic examination confirmed that metal expulsion from the resistance welds was generally present. The stator vane failed by a fatigue crack that initiated at internal surface discontinuities caused by metal expulsion from the resistance seam weld used in fabricating the vane. Expulsion of metal from seam welds should be eliminated by a slight reduction in welding current to reduce the temperature, by an increase in the electrode force, or both.
Book Chapter
Failure of a Large Gas Cylinder Due to Internal Laminar Defects
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001446
EISBN: 978-1-62708-234-1
.... It was concluded that failure of this vessel resulted from the development of a radial crack orientated in the axial direction. This appeared to have originated on the bore surface in a region where the laminar defect closely approached this surface. The defect was introduced during the manufacture of the vessel...
Abstract
A 2 ft. diam 20 ft. long cylinder with a wall thickness of 1 in. used for the transportation of a compressed gas failed by cracking. The cylinder was forged in a low ally steel. The working pressure was 3000 psi and it had been in service for about seven years. A longitudinal crack, about 2 in. long, developed at the approximate mid-length of the vessel, and allowed slow de-pressurization. Subsequent examination by radiography and ultrasonic means indicated the crack was associated with an irregularly shaped, laminar type of defect located within the wall of the vessel. It was concluded that failure of this vessel resulted from the development of a radial crack orientated in the axial direction. This appeared to have originated on the bore surface in a region where the laminar defect closely approached this surface. The defect was introduced during the manufacture of the vessel, probably originating as a secondary pipe in the ingot which was subsequently displaced and forced into the wall of the vessel during the piercing operation.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006930
EISBN: 978-1-62708-395-9
... by the contraction are high, the operator will set up the experiment so that the axial force is controlled. Common settings for this are an axial force of 0 N ± 0.2 N. If the axial force is controlled, the gap can be monitored to see how much contraction is occurring. Then, other operators can maintain the same gap...
Abstract
Rheology is defined as the study of the flow and deformation of matter. This article begins with an examination of flow behavior. It describes the geometries and methods employed for rheological testing of polymers in their molten state. It also discusses materials that are predominantly in the solid state and the methods employed for solids testing. Examples of unidirectional and dynamic oscillatory testing are provided for different mechanical behaviors.
Book Chapter
Fracture and Wear Failure of a Locomotive Turbocharger-Bearing Sleeve
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001847
EISBN: 978-1-62708-241-9
... underneath. This led to further wear and an increase in friction between the sleeve and bearing bush. Fatigue crack initiation occurred at the root fillet because of stress concentration and large frictional forces. Insufficient nitriding depth facilitated the propagation of fatigue cracks. bearing...
Abstract
An investigation was conducted to determine what caused a bearing sleeve in a locomotive turbocharger to fail. The sleeve, which is made of nitrided 38CrMoAl steel, fractured at the transition fillet between the cylinder and plate. Visual examination revealed significant wear on the external surface of the cylinder, with multiple origin fatigue fracture appearing to be the dominant fracture mechanism. Metallurgical examination indicated that the nitrided layer was not as deep as it was supposed to be and had worn away on the outer surface of the sleeve, exposing the soft matrix underneath. This led to further wear and an increase in friction between the sleeve and bearing bush. Fatigue crack initiation occurred at the root fillet because of stress concentration and large frictional forces. Insufficient nitriding depth facilitated the propagation of fatigue cracks.
Book Chapter
Investigation of Fatigue-Induced Socket-Welded Joint Failures for Small-Bore Piping Used in Power Plants
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001594
EISBN: 978-1-62708-229-7
..., however, contained no apparent material defect or welding anomaly to explain crack initiation. Five failures (about 38%) initiated in the axial toe of the socket weld joint. Cyclic bending in response to inadequately supported large cantilever loads or piping system vibrations was the driving force...
Abstract
Nuclear power plants typically experience two or three high-cycle fatigue failures of stainless steel socket-welded connections in small bore piping during each plant-year of operation. This paper discusses fatigue-induced failure in socket-welded joints and the strategy Texas Utilities Electric Company (TU Electric) has implemented in response to these failures. High-cycle fatigue is invisible to proven commercial nondestructive evaluation (NDE) methods during crack initiation and the initial phases of crack growth. Under a constant applied stress, cracks grow at accelerating rates, which means cracks extend from a detectable size to a through-wall crack in a relatively short time. When fatigue cracks grow large enough to be visible to NDE, it is likely that the component is near the end of its useful life. TU Electric has determined that an inspection program designed to detect a crack prior to the component leaking would involve frequent inspections at a given location and that the cost of the inspection program would far exceed the benefits of avoiding a leak. Instead, TU Electric locates these cracks by visually monitoring for leaks. Field experience with fatigue-induced cracks in socket-welded joints has confirmed that visual monitoring does detect cracks in a timely manner, that these cracks do not result in catastrophic failures, and that the plant can be safely shut down in spite of a leaking socket-welded joint in a small bore pipe. Historical data from TU Electric and Southwest Research Institute are presented regarding the frequency of failures, failure locations, and the potential causes. The topics addressed include 1) metallurgical and fractographic features of fatigue cracks at the weld toe and weld root; 2) factors that are associated with fatigue, such as mechanical vibration, internal pulsation, joint design, and welding workmanship; and 3) implications of a leaking crack on plant safety. TU Electric has implemented the use of modified welding techniques for the fabrication of socket-welded joints that are expected to improve their ability to tolerate fatigue.
Book Chapter
Stress Analysis and Fracture Mechanics
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003530
EISBN: 978-1-62708-180-1
.... Definitions Stress Definition A simple definition of stress is as a force per unit area. In a geometry that has a uniform stress distribution, such as a bar in simple tension, a force, F , applied along the axis of the bar that has area, A , has uniform stress, σ, where: (Eq 1) σ = F...
Abstract
This article describes the underlying fundamentals, applications, the relevance and necessity of performing proper stress analysis in conducting a failure analysis. It presents an introduction to the stress analysis of bodies containing crack-like imperfections and the topic of fracture mechanics. The fracture mechanics approach is an important part of stress analysis at the tips of sharp cracks or discontinuities. The article reviews fracture mechanics concepts, including linear elastic fracture mechanics, elastic-plastic fracture mechanics, and subcritical fracture mechanics. It also provides information on the applications of fracture mechanics in failure analysis.
Book Chapter
Stress Analysis and Fracture Mechanics
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006767
EISBN: 978-1-62708-295-2
... or discontinuities. This is briefly discussed in the section “Fracture Mechanics” in this article. Definitions Stress Definition A simple definition of stress is as a force per unit area. In a geometry that has a uniform stress distribution, such as a bar in simple tension, a force, F , applied along...
Abstract
This article describes concepts and tools that can be used by the failure analyst to understand and address deformation, cracking, or fracture after a stress-related failure has occurred. Issues related to the determination and use of stress are detailed. Stress is defined, and a procedure to deal with stress by determining maximum values through stress transformation is described. The article provides the stress analysis equations of typical component geometries and discusses some of the implications of the stress analysis relative to failure in components. It focuses on linear elastic fracture mechanics analysis, with some mention of elastic-plastic fracture mechanics analysis. The article describes the probabilistic aspects of fatigue and fracture. Information on crack-growth simulation of the material is also provided.
Book Chapter
Fracture of a Core Component in a Nuclear Reactor
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001515
EISBN: 978-1-62708-229-7
... was observed, thus a region of tougher material did not cause crack arrest. The most likely reason for the crack arrest is that the driving force disappeared. The internal pressure of the tube (the driving force for the axial crack growth) is released into the surrounding annulus, causing a decompression wave...
Abstract
This paper describes the analysis of the failure of a Zr-2.5Nb pressure tube in a CANDU reactor. The failure sequence was established as: (1) the existence of an undetected manufacturing flaw in the form of a lamination, (2) in-service development of the flaw by oxidation of the lamination, (3) delayed hydride cracking, which extended the flaw through the wall of the tube, resulting in leakage, and (4) rupture of the tube by cold pressurization while the reactor was shut down. The comprehensive failure analysis led to a remedial action plan that permitted the reactor to be returned to full-power operation and ensured a low probability of a similar occurrence for all CANDU reactors.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047968
EISBN: 978-1-62708-225-9
... Abstract The radial-contact ball bearings (type 440C stainless steel and hardened) supporting a computer microdrum were removed for examination as they became noisy. Two sizes of bearings were used for the microdrum and a spring washer that applied a 50 lb axial load on the smaller bearing...
Abstract
The radial-contact ball bearings (type 440C stainless steel and hardened) supporting a computer microdrum were removed for examination as they became noisy. Two sizes of bearings were used for the microdrum and a spring washer that applied a 50 lb axial load on the smaller bearing was installed in contact with the inner ring for accurate positioning of the microdrum. The particles contained in residue achieved after cleaning of the grease on bearings with a petroleum solvent were attracted by a magnet and detected under a SEM (SEM) to be flaked off particles from the outer raceway surface. Smearing, true-brinelling marks, and evidence of flaking caused by the shifting of the contact area (toward one side) under axial load, was revealed by SEM investigation of one side of the outer-ring raceway. The true-brinelling marks on the raceways were found to be caused by excessive loading when the bearing was not rotating or during installation. It was concluded that the bearings had failed in rolling-contact fatigue. The noise was eliminated and the preload was reduced to 30 lb by using a different spring washer as a corrective measure.
Book Chapter
Failure Analysis for a Carbon Steel Vaporizer Coil
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001686
EISBN: 978-1-62708-220-4
... Abstract A root cause failure analysis was performed on a vaporizer coil removed from a horizontal forced circulation vaporizer. The carbon steel coil was wound in a right-hand helix with a coil centerline diameter of about 2 m. The vaporizer was gas fired and used Dowtherm A as the heat...
Abstract
A root cause failure analysis was performed on a vaporizer coil removed from a horizontal forced circulation vaporizer. The carbon steel coil was wound in a right-hand helix with a coil centerline diameter of about 2 m. The vaporizer was gas fired and used Dowtherm A as the heat transfer fluid. Design conditions are based on annular fluid flow to cool the coil wall. NDE, metallographic and fractographic examinations were performed. Numerous, circumferentially oriented, OD initiating cracks were found near the crown for two coils near the non-fired end of the vaporizer. The cracking was confined to the inner diameter of the vaporizer coil at positions from 4:00 to 7:00. The cracking was characterized as transgranular and the fracture surface had beach marks. The failure mechanism was thermal fatigue. The heat transfer calculation predicted that dryout of the coil would occur for coils at the non-fired end of the vaporizer during low flow transients. Dryout results in rapid increase in the tube wall temperature. Thermal cycling of the coil is completed by liquid quenching resulting from resumption of normal flow rates and the return to annular flow. The probable root cause of failure was low flow transient operation.
Book Chapter
Crack Propagation of Sirocco Fan
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001576
EISBN: 978-1-62708-219-8
... operation. The casing of the fan was vibrated at 10 to 60 Hz. Peak stress easily overcame 30 MPa, which was enough to initiate cracking. The fracture surfaces and starting position were the same as those on the failed fan. It was concluded that the exciting force from an air compressor caused blade failure...
Abstract
Macrofractographs of the fracture surface from a multibladed fan showed that cracks started at the corner where bending stress was concentrated and propagated through the blade by fatigue. Peak stress at the monitoring position was less than 10 MPa. To simulate crack growth, the rotor was repeatedly deformed by a hydraulic fatigue tester. Comparison of striations of the failed blade with that of the tested one revealed the failed blade was loaded with more than 30 MPa of stress. These tests confirmed that the rotor and blades had sufficient strength to withstand up to 3x the stress of normal operation. The casing of the fan was vibrated at 10 to 60 Hz. Peak stress easily overcame 30 MPa, which was enough to initiate cracking. The fracture surfaces and starting position were the same as those on the failed fan. It was concluded that the exciting force from an air compressor caused blade failure.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001810
EISBN: 978-1-62708-180-1
... Forced assembly; overloaded or insufficient lubrication Eccentric pitting on raceway of thrust bearing Eccentric mounting or loading Cracking and Fracturing Cracks through ring Fit too tight; nonuniform seating surface; deformation or ovality of housing; rotational creep or fretting Axial...
Abstract
Rolling-element bearings use rolling elements interposed between two raceways, and relative motion is permitted by the rotation of these elements. This article presents an overview of bearing materials, bearing-load ratings, and an examination of failed bearings. Rolling-element bearings are designed on the principle of rolling contact rather than sliding contact; frictional effects, although low, are not negligible, and lubrication is essential. The article lists the typical characteristics and causes of several types of failures. It describes failure by wear, failure by fretting, failure by corrosion, failure by plastic flow, failure by rolling-contact fatigue, and failure by damage. The article discusses the effects of fabrication practices, heat treatment and hardness of bearing components, and lubrication of rolling-element bearings with a few examples.
Book Chapter
Disruption of a Hydro-Extractor
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001420
EISBN: 978-1-62708-220-4
... steel shell and two end plates. It was designed to spin at 2200 rpm, using centrifugal force to expel liquids through nearly 3000 drilled holes in the shell wall. Investigators found that the shell separated completely from the bottom plate. The top plate, though it cracked radially, remained attached...
Abstract
A hydroextractor installed new for the drying of sugar massecuite consisted of a metal basket fixed to a vertical spindle. Disruption occurred just after the machine had been run up to speed and was not preceded by any abnormal behavior. The basket assembly consisted of a Ni-Cr-Mo steel shell and two end plates. It was designed to spin at 2200 rpm, using centrifugal force to expel liquids through nearly 3000 drilled holes in the shell wall. Investigators found that the shell separated completely from the bottom plate. The top plate, though it cracked radially, remained attached over most of its circumference. The basket also contained a 22-gauge Monel metal liner that had been perforated by stabbing, raising pronounced burrs that faced each hole. Apart from the local spots of corrosion due to the lining, the inner surface of the basket showed little evidence of general corrosion. What caused the basket to fail was the presence of corrosion-fatigue cracks or fissures radiating from the holes. A secondary cause was that the scantlings of the basket were too light.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001733
EISBN: 978-1-62708-225-9
... failure. A drive assembly, schematically illustrated in Fig. 1 , was part of a guide mechanism on a large rubber processing machine. The spindle at the left reversed direction by 90 deg every 4 s due to the action of nylon-covered drive cable which transmitted forces from the rotating head assembly over...
Abstract
Drive cables from a rubber processing machine were failing in less than 8 h of operation, the expected service life being much greater than 100 h. Comparison cables were tested to failure under known stress conditions, including tensile overload, torsional loading, reversed bending alternating stress, and buckling (compressive) cyclic loading. The mode of failure was found to be reversed bending fatigue caused by drive cables moving over guide pulleys of small radii. Modifications of the machinery and drive cable system were suggested.
Book Chapter
Fatigue Failure of a Steel Channel-Shaped Retainer Because of Vibration
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047059
EISBN: 978-1-62708-217-4
... axially a small distance. The sources of stress in the retainer were vibration and centrifugal force, which hammered the pins against the retainer. Investigation Part of one flange broke completely off the retainer ( Fig. 1a ). The features of the fracture surface on the loose piece were...
Abstract
The governor on an aircraft engine failed and upon disassembly of the unit, it was discovered that the retainer for the flyweight pivot pins was broken. The channel-shaped retainer was made of 0.8 mm (0.030 in.) thick 1018 or 1020 steel. The part was plated with copper, which acted as a stop-off during carburizing of the offset, circular thrust-bearing surface surrounding the 16-mm (0.637-in.) diam hole. The bearing surface was case hardened to a depth of 0.05 to 0.1 mm (0.002 to 0.005 in.), then austempered to obtain a minimum hardness of 600 Knoop (1-kg, or 2.2-lb, load). Considerable vibration was created in the installation because of the design of the mechanical device used to transmit power to the governor. The pins were permitted to slide axially a small distance. Analysis (visual inspection, microscopic examination, and ductility measurements) supported the conclusion that failure of the retainer was the result of fatigue caused by vibration in the flyweight assembly. Impact of the pivot pins on the retainer also contributed to failure. Recommendations included redesign of the flyweight assembly, and replacement of the channel-shaped retainer with a spring-clip type of pin retainer.
Book Chapter
Failures of Rolling-Element Bearings and Their Prevention
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006834
EISBN: 978-1-62708-329-4
... (axial loads having to act in the opposite direction of this filling slot) but are now rarely used due to these somewhat limitations. Internal designs and assembly techniques now allow most bearings to sustain axial, radial, and/or combined loads. Figure 2 ( Ref 3 ) gives an overview of the large...
Abstract
This article is dedicated to the fields of mechanical engineering and machine design. It also intends to give a nonexhaustive view of the preventive side of the failure analysis of rolling-element bearings (REBs) and of some of the developments in terms of materials and surface engineering. The article presents the nomenclature, numbering systems, and worldwide market of REBs as well as provides description of REBs as high-tech machine components. It discusses heat treatments, performance, and properties of bearing materials. The processes involved in the examination of failed bearings are also explained. Finally, the article discusses in detail the characteristics and prevention of the various types of failures of REBs: wear, fretting, corrosion, plastic flow, rolling-contact fatigue, and damage. The article includes an Appendix, which lists REB-related abbreviations, association websites, and ISO standards.
Book Chapter
Failure Analysis of Helical Suspension Springs under Compressor Start/Stop Conditions
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001596
EISBN: 978-1-62708-225-9
... deflection to working height. Equation 4 has been evaluated numerically and the results are shown in Fig. 7 . For a 9 mm displacement the value ratio of lateral to axial stiffness is 0.53; thus, the lateral stiffness is 1.54 N/mm and the lateral force is then 13.88 N . Fig. 6 Schematic diagram...
Abstract
During testing of compressors under start/stop conditions, several helical suspension springs failed. The ensuing failure investigation showed that the springs failed due to fatigue. The analysis showed that during start/stop testing the springs would undergo both a lateral and axial deflection, greatly increasing the torsional stresses on the spring. To understand the fatigue limits under these test conditions, a bench test was used to establish the fatigue strength of the springs. The bench tests showed that the failed springs had an unacceptable surface texture that reduced the fatigue life. Based on an understanding of the compressor motion, a Monte Carlo model was developed based on a linear damage theory to predict the fatigue life of the springs during start/stop conditions. The results of this model were compared to actual test data. The model showed that the design was marginal even for springs with acceptable surface texture. The model was then used to predict the fatigue life requirements on the bench test such that the reliability goals for the start/stop testing would be met, thus reducing the risk in qualifying the compressor.
Book Chapter
Failure of a Main Steam Line by Thermal Fatigue
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048850
EISBN: 978-1-62708-229-7
... normally or nearly so to the main hoop stress direction. Residual-stress measurements were made using a hole-drilling technique and strain gage rosettes. Large tensile axial residual stresses were measured at nearly every location investigated with a large residual hoop stress was found for locations...
Abstract
Cracks on the outer surface near a hanger lug were revealed by visual inspection of a type 316 stainless steel main steam line of a major utility boiler system. Cracking was found to have initiated at the outside of the pipe wall or immediately beneath the surface. The microstructure of the failed pipe was found to consist of a matrix precipitate array (M23C6) and large s-phase particles in the grain boundaries. A portable grinding tool was used to prepare the surface and followed by swab etching. All material upstream of the boiler stop valve was revealed to have oriented the cracking normally or nearly so to the main hoop stress direction. Residual-stress measurements were made using a hole-drilling technique and strain gage rosettes. Large tensile axial residual stresses were measured at nearly every location investigated with a large residual hoop stress was found for locations before the stop valve. It was concluded using thermal stress analysis done using numerical methods and software identified as CREPLACYL that one or more severe thermal downshocks might cause the damage pattern that was found. The root cause of the failure was identified to be thermal fatigue, with associated creep relaxation.
1