1-20 of 565

Search Results for austenitizing

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2002
Fig. 82 Schematic illustration of the effect of austenitizing temperature on grain size of a eutectoid steel after normalizing. Source: Ref 47 More
Image
Published: 30 August 2021
Fig. 12 Effect of austenitizing temperature on structure of 1% C steel. (a) Quenched from 1000 °C (1830 °F). Coarse martensite plates (gray) and retained austenite (white). Vickers hardness of 745. (b) Quenched from 750 °C (1380 °F). Spheroidized carbides (white) in a fine martensite matrix More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001159
EISBN: 978-1-62708-232-7
... Abstract A recuperator used for preheating the combustion air for a rolling mill furnace failed after a relatively short service time because of leakage of the pipes in the colder part. The 6 % chrome steel pipes used for the warmer part connected by means of welding with austenitic electrodes...
Image
Published: 01 January 2002
Fig. 33 Volume fraction of retained austenite in carbon steels fully austenitized and water quenched in water or brine at room temperature. Source: Ref 11 More
Image
Published: 15 January 2021
Fig. 33 Volume fraction of retained austenite in carbon steels fully austenitized and water quenched in water or brine at room temperature. Source: Ref 14 More
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001110
EISBN: 978-1-62708-214-3
...). Pertinent Specifications The tube was seamless and was manufactured from type 321 austenitic stainless steel (0.04% C, 1.67% Mn, 1.07% Si, 0.040% P, 0.006% S, 17.50% Cr, 9.77% Ni, 0.27% Mo, 0.28% Cu, 0.53% Ti, with the balance iron). The wall thickness was 1 mm(0.04 in.). Testing Procedure...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001394
EISBN: 978-1-62708-234-1
... in a chemical plant handling mixtures of organic liquids and dilute sulphuric acid having a pH value of 2–4 at temperatures of 80–90°C. It worked for approximately 20 minutes every two hours and failure occurred after some 1,200 hours service life. Intergranular attack in austenitic steels is promoted...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0089676
EISBN: 978-1-62708-224-2
... Abstract Chain link, a part of a mechanism for transferring hot or cold steel blooms into and out of a reheating furnace, broke after approximately four months of service. The link was cast from 2% Cr austenitic manganese steel and was subjected to repeated heating to temperatures of 455 to 595...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001606
EISBN: 978-1-62708-226-6
... Abstract Failures of four different 300-series austenitic stainless steel biomedical fixation implants were examined. The device fractures were observed optically, and their surfaces were examined by scanning electron microscopy. Fractography identified fatigue to be the failure mode for all...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001177
EISBN: 978-1-62708-234-1
... Abstract A solution containing 50 to 70% calcium chloride (pH 7.5 to 8.5) was concentrated by evaporation in a brick-lined vessel by passing steam at a pressure of 15 atmospheres through a system of heating coils made of austenitic stainless steel X 10 Cr-Ni-Mo-Ti 18 12 (Material No. 1.4573...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001838
EISBN: 978-1-62708-241-9
... in the circumferential direction and penetrated nearly 2 mm into the pipe wall. The pipes were made of titanium-stabilized austenitic stainless steel X6CrNiMoTi17-12-2. Six hypotheses were considered during the investigation, which ultimately concluded that the failure was caused by liquation cracking due to overheating...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047991
EISBN: 978-1-62708-225-9
... austenitized. Displacement of metal on the outer raceway was revealed by elongation of grain structure. It was concluded that the failure of the raceway surface was due to incomplete austenitization caused by the improper heat treatment during flame hardening process. Antennas Austenitizing Bearing...
Image
Published: 01 January 2002
Fig. 3 Vibratory cavitation erosion of type 304 austenitic stainless steel. (a) Linear deformation features and boundary definition. (b) Material removal at upheaved grain boundary More
Image
Published: 01 January 2002
Fig. 6 Deep cavitation erosion of austenitic stainless steel weld overlay on a carbon steel turbine blade. Courtesy of T.J. Spicher More
Image
Published: 01 January 2002
Fig. 15 Accelerated cavitation erosion and cracking associated with austenitic stainless steel weld deposits on a martensitic stainless steel (CA-15) impeller vane More
Image
Published: 01 January 2002
Fig. 35 Inside surface of an austenitic stainless steel superheater tube showing a tight crack caused by stress corrosion. Arrows indicate ends of crack. More
Image
Published: 01 January 2002
Fig. 33 Fatigue striations in 18-8 austenitic stainless steel tested in rotating bending. (a) Fine striations were located midway between origin and final overload fracture, while (b) coarse striations were located closer to the overload area. Overall direction of crack growth in these SEM More
Image
Published: 01 January 2002
Fig. 40 Crystallographic fatigue of 18-8 austenitic stainless steel near fracture origin in rotating beam specimen. Global crack propagation direction from lower left to upper right in this SEM view More
Image
Published: 01 January 2002
Fig. 25 Austenitic stainless steel tube that was corroded where a fabric bag was taped to it. Courtesy of M.D. Chaudhari, Columbus Metallurgical Service More
Image
Published: 01 January 2002
Fig. 3 Relative SCC behavior of austenitic stainless steels in boiling magnesium chloride. Source: Ref 11 More