1-20 of 34 Search Results for

austenite decomposition

Sort by
Image
Published: 01 January 2002
Fig. 4 Hot-rolled 1022 steel showing severe banding. Bands of pearlite (dark) and ferrite were caused by segregation of carbon and other elements during solidification and later decomposition of austenite. Nital. 250×. Courtesy of J.R. Kilpatrick More
Image
Published: 30 August 2021
Fig. 3 Hot rolled 1022 steel showing severe banding. Bands of pearlite (dark) and ferrite were caused by segregation of carbon and other elements during solidification and later decomposition of austenite. Nital etch. Original magnification: 250×. Courtesy of J.R. Kilpatrick More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001819
EISBN: 978-1-62708-241-9
..., such as high nitrogen content and low cooling rate, minimize the formation of Cr 2 N precipitates [ 6 ] and increase the volume fraction of austenite. The σ phase is formed as a consequence of the decomposition of ferrite and also increases the volume fraction of austenite. This σ phase reaction is favored...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003510
EISBN: 978-1-62708-180-1
..., accelerate phase transformations ( Ref 7 ). This occurs whether the stresses are tensile or compressive and results in accelerated austenite decomposition and increased M s temperature. The strain of this process is often estimated as being equal to the volumetric expansion divided by 3 ( Ref 8...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001831
EISBN: 978-1-62708-241-9
... in the corners of the outer ring and grew large enough for a fracture to occur. cylindrical roller bearing fatigue fracture grease degradation bearing steel leaded brass retained austenite Raman spectroscopy thermogravimetric analysis chemical composition GCr15 (high-carbon chromium-alloy steel...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001808
EISBN: 978-1-62708-241-9
... of poor operations or improper materials selection, and thus often preventable. heat exchangers drain lines corrosion bacterial growth copper stainless steel pitting perforations microscopy corrosion resistance 304L stainless steel (austenitic wrought stainless steel) UNS S30403 316L...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006816
EISBN: 978-1-62708-329-4
... between austenitic grain size and quench cracking Quench sensitivity Cracking and distortion increase as carbon equivalent (C eq ) is increased. Alloy is crack sensitive if C eq > 0.52, where: C eq = C + Mn 5 + Mo 5 + Cr 10 + Ni 10...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003501
EISBN: 978-1-62708-180-1
... functions. The term “decomposition” is generally used to describe the part of the design process that identifies the subassemblies comprising a product or larger assembly. That is, in the conceptual design of an automobile, it could be decomposed into the engine, drivetrain, frame, and so forth...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006800
EISBN: 978-1-62708-329-4
... functions. The term decomposition is generally used to describe the part of the design process that identifies the subassemblies comprising a product or larger assembly. That is, in the conceptual design of an automobile, it could be decomposed into the engine, drivetrain, frame, and so forth...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
.... The martensitic stainless steels have yield stresses about twice those of carbon-manganese steels, typically about 550 MPa (80 ksi) compared with 250 MPa (36 ksi), and resistance to cavitation erosion that is superior to A-27. Some smaller hydroturbines and pumps have been fabricated from cast austenitic...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
... in Fig. 4 . Face-centered-cubic (fcc) metals (for example, copper, aluminum, nickel, and austenitic steels) exhibit the greatest ductility during rapid fracture and, in benign environments, do not normally fracture via cleavage. However, brittle cracking of fcc metals can occur under conditions...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
..., specifically oriented grains tend to crack, leaving a shiny, faceted appearance easily differentiated from dull and fibrous, dimple-rupture features. Cleavage in a steel sample is shown in Fig. 4 . Face-centered-cubic (fcc) metals (for example, copper, aluminum, nickel, and austenitic steels) exhibit...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001816
EISBN: 978-1-62708-180-1
... cause thinning and subsequent rupture. Overheating may or may not occur in tubes thinned by erosion or corrosion. Microstructural Features Prolonged overheating, usually at temperatures below Ac 1 (the temperature at which austenite begins to form) in carbon and low-alloy steels, causes...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001003
EISBN: 978-1-62708-227-3
... flux. The embrittlement was shown to be caused by the flow of corrosion generated hydrogen which converted the cementite to methane which nucleated voids in the steel. A thermodynamic estimate indicated that a small amount of chromium would stabilize the carbides against decomposition by hydrogen...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006825
EISBN: 978-1-62708-329-4
... distribution due to maladjusted or worn fuel burners will have the same effect as an increase in heat flux. Prolonged overheating, usually at temperatures below Ac 1 (the temperature at which austenite begins to form) in carbon and low-alloy steels, causes decomposition of pearlite into ferrite...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
... is involved. As an example of improper material specification or use, galvanized steel clips were welded to austenitic stainless steel piping. The galvanized (zinc) coating became molten during the welding process, and the liquid zinc attacked the grain boundaries under shrinkage stresses in the stainless...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001714
EISBN: 978-1-62708-232-7
... ratio. Metallographic investigations revealed that the surface of the attacked pipes consisted of (Cr, Fe) carbide. The metal dusting was the result of a decomposition process (CO to CO2 + C) that deposited C on the pipe surface. Because of the high temperature, the C subsequently diffused through...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
... decomposition, and it can be used to estimate the tensile strength for a given composition and section size of cast iron. Hypereutectic irons tend to form graphite, while hypoeutectic irons tend to form carbides during solidification ( Ref 1 , 2 ). Other low-melting eutectic constituents in gray irons can...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... analysis, metallographic analysis, and simulated-service tests. It provides case studies for the analysis of SCC service failures and their occurrence in steels, stainless steels, and commercial alloys of aluminum, copper, magnesium, and titanium. aluminum alloys austenitic stainless steel carbon...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds...