1-12 of 12 Search Results for

atomic fluorescence spectrometry

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006770
EISBN: 978-1-62708-295-2
... on the operating principles and applications of detectors for x-ray spectroscopy, namely energy-dispersive spectrometers, wavelength-dispersive spectrometers, and handheld x-ray fluorescence systems. The processes involved in x-ray analysis in the SEM and handheld x-ray fluorescence analysis are then covered...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006766
EISBN: 978-1-62708-295-2
.... If this information is not available, rapid, nondestructive, semiquantitative techniques such as energy-dispersive x-ray spectroscopy (EDS) and portable x-ray fluorescence (XRF) tools can be used to estimate the material composition in order to allow the chemical analyst to determine the proper techniques...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001122
EISBN: 978-1-62708-214-3
... quantified by correcting for atomic number, absorption, and fluorescence (the ZAF method). The composition of the hammerhead is listed in Table 1 . It is within the range specified by the American National Standards Institute ( Ref 1 ). Composition is consistent with an aluminum-deoxidized, plain high...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003524
EISBN: 978-1-62708-180-1
..., some of which are gathered and held by the leakage field. The magnetically held collection of particles forms an outline of the discontinuity and indicates its size, shape, and extent. Frequently, a fluorescent material is combined with the particles so that discontinuities can be detected visually...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006939
EISBN: 978-1-62708-395-9
... ranging from 50 to 70 nm and lengths in the range of 0.5 to 1 μm ( Ref 10 , 16 ). Fig. 2 Schematic diagrams of (a) halloysite crystalline structure and (b) halloysite nanotubes. Images of halloysite nanotubes by (c) transmission electron microscopy (TEM) and (d) atomic force microscopy (AFM...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006822
EISBN: 978-1-62708-329-4
... the chemical composition of surface residue. Various techniques may be used, including energy-dispersive spectroscopy, x-ray diffraction, or gas chromatography/mass spectrometry. Where microbiologically influenced corrosion is suspected as a possible cause or contributor to a failure, deposit samples should...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006782
EISBN: 978-1-62708-295-2
... in steam. The exact nature of this barrier that forms on the metal surface is not well understood. It could be a very thin, transparent oxide film or a layer of adsorbed oxygen atoms. However, for the purposes of engineering application, it is not necessary to completely understand the mechanism...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003522
EISBN: 978-1-62708-180-1
... is bombarded with a beam of electrons. Light elements to boron (atomic number 5) can be detected, and semiquantitative analysis can be made for atomic numbers of 11 (sodium) and higher. This is the most generally used microchemical analysis technique in failure investigations. A rapid qualitative analysis can...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006757
EISBN: 978-1-62708-295-2
... probe microanalyzer developed by Castaing in 1948. The x-rays are generated when a sample of the area of interest is bombarded with a beam of electrons. Light elements to boron (atomic number 5) can be detected, and semiquantitative analysis can be made for atomic numbers of 11 (sodium) and higher...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001818
EISBN: 978-1-62708-180-1
.... At higher magnification, evidence of some plastic deformation before fracture was found. Energy-dispersive spectrometry (EDS) scans of an oxidized area of the fracture revealed traces of sulfur and chlorine, probably from the dye penetrant, and the iron, chromium, and nickel normally present. At another...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... the protective film to the metal surface. Injurious ions will chemisorb on the metal surface, forming a bond between the ion and the metal atom. There are several proposed mechanisms that describe how the adsorbed injurious ions facilitate crack propagation. The specific steps involved in each mechanism vary...