Skip Nav Destination
Close Modal
Search Results for
assembly
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 579 Search Results for
assembly
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001759
EISBN: 978-1-62708-241-9
... rig Fig. 12 Core microstructure of nitrided specimen Nital 3% ×100 Fig. 13 Case microstructure of nitrided specimen Nital 3% ×100 Fig. 14 Case microstructure of nitrided specimen Nital 3% ×200 Abstract A bearing cup in a drive shaft assembly on an automobile...
Abstract
A bearing cup in a drive shaft assembly on an automobile was found to have failed. A detailed analysis was conducted using the QC story approach, which begins by proposing several possible failure scenarios then following them to determine the main root cause. A number of alternative solutions were identified and then validated based on chemical analysis, endurance and hardness tests, and microstructural examination. The investigation revealed that carbonitriding can effectively eliminate the type of failure encountered because it prevents through hardening of the bearing cup assembly.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0092155
EISBN: 978-1-62708-221-1
... was conducted to determine the cause of the malfunction and to recommend corrective measures that would prevent similar failures in other vehicles. Fig. 1 Gas-nitrided 4140 steel (27–31 HRC) drive-gear assembly in which gear teeth deformed because of faulty design and low core hardness. Details A and B...
Abstract
Component slippage in the left-side final drive train of a tracked military vehicle was detected after the vehicle had been driven 13,700 km (8500 miles) in combined highway and rough-terrain service. The slipping was traced to the mating surfaces of the final drive gear and the adjacent splined coupling sleeve. Specifications included that the gear and coupling be made from 4140 steel bar oil quenched and tempered to a hardness of 265 to 290 HB (equivalent to 27 to 31 HRC) and that the finish-machined parts be single-stage gas nitrided to produce a total case depth of 0.5 mm (0.020 in.) and a minimum surface hardness equivalent to 58 HRC. Investigation (visual inspection, low-magnification images, 500X images of polished sections etched in 2% nital, spectrographic analysis, and hardness testing) supported the conclusion that the failure occurred by crushing, or cracking, of the case as a result of several factors. Recommendations included reducing the high local stresses at the pitch line to an acceptable level with a design modification. Also suggested was specification of a core hardness of 35 to 40 HRC to provide adequate support for the case and to permit attainment of the specified surface hardness of 58 HRC.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001466
EISBN: 978-1-62708-221-1
... of fracture indicated that bending stresses were primarily responsible, the alignment of the assembly was checked and it was found that the level of the inboard feet of the gear-box was 0.060 in. below that of the out-board feet and the bearing pedestal which carried the other end of the shaft, as indicated...
Abstract
A shaft, which carried both a worm wheel and hoist barrel, fractured at a reduction in diameter adjacent to a mating gearbox. The appearance of the fracture was characteristic of a fatigue failure of a rotating shaft resulting from excessive bending stresses. Cracks of the fatigue type broke out all around the circumference at the change of section and progressed inwards. Microscopic examination of the material showed it to be an alloy steel in the hardened and tempered condition, with no abnormal features. It was considered that the bending stresses due to the deflection of the shaft arising from misalignment were responsible for the fatigue failure, which occurred in a region of stress concentration where insignificant fillet radius had been provided.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048661
EISBN: 978-1-62708-225-9
... Abstract The drive wheel on a clutch-drive support assembly was slightly loose and caused clutch failures in service after 680,000 cycles. After failure, removal of the taper pin holding the drive wheel on the shaft was difficult, indicating that the pin was tight in the assembly. The taper pin...
Abstract
The drive wheel on a clutch-drive support assembly was slightly loose and caused clutch failures in service after 680,000 cycles. After failure, removal of the taper pin holding the drive wheel on the shaft was difficult, indicating that the pin was tight in the assembly. The taper pin was made of 1141 steel, the shaft 1117 steel, and the drive wheel 52100 steel. It was found that failure of the clutch-drive support assembly occurred as a result of fatigue fracture of the taper pin. A loose fit between the drive wheel and the shaft and between the drive wheel and the pin permitted movement that resulted in fatigue failure. Fretting of the pin and drive shaft was observed but did not appear to have contributed to the failure. To prevent reoccurrence, the assembly should be redesigned to include an interference fit between the shaft and the drive wheel. The drive wheel and the shaft should be taper reamed at assembly to ensure proper fit. In addition, receiving inspection should be more critical of the components and accept only those that meet specifications.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047315
EISBN: 978-1-62708-225-9
Abstract
A sand-cast gray iron flanged nut was used to adjust the upper roll on a 3.05 m (10 ft) pyramid-type plate-bending machine. The flange broke away from the body of the nut during service. Analysis (visual inspection and 150x micrographs of sections etched with nital) supported the conclusions that brittle fracture of the flange from the body was the result of overload caused by misalignment between the flange and the roll holder. The microstructure contained graphite flakes of excessive size and inclusions in critical areas; however, these metallurgical imperfections did not appear to have had significant effects on the fracture. Recommendations included carefully and properly aligning the flange surface with the roll holder to achieve uniform distribution of the load. Also, a more ductile metal, such as steel or ductile iron, would be more suitable for this application and would require less exact alignment.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001052
EISBN: 978-1-62708-214-3
... Fig. 1 Failed exhaust hose assembly. Fig. 2 Closeup view of bellow. Cracks appeared to follow the seam weld, 1×. Fig. 3 (a) Fracture surface. (b) SEM fractograph of a field on the fracture surface. The fracture topography consisted of uniform, medium-size fatigue striations...
Abstract
A failure analysis was conducted to determine the cause of recurring failure of flexible bellows in an exhaust hose assembly. The bellows were made of type 321 stainless steel. Visual examination showed that cracks followed a path along the seam weld in the bellows. Most of the cracks followed a multidirectional/circular pattern, occasionally chipping off the convolutions, an indication of high-resonance fatigue-type cracking. Scanning electron fractography showed fatigue striations throughout the fracture surface. The microstructure consisted of relatively large grains and an abnormal degree of titanium-base stringers. Wall thickness was about 0.15 mm (0.006 in.) underside. It was concluded that the high vane pass frequency excited the natural vibration of the bellows to a higher resonance and cracked the bellows after a relatively short service period. The assembly was redesigned, and no further cracking occurred.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001304
EISBN: 978-1-62708-215-0
... surface of diffuser cone near intake end, showing laminations and microcracks in Corten steel. Fig. 1 Exhaust diffuser assembly. Arrow indicates direction of airflow. Fig. 2 Diffuser cone with intake side up. Note the zigzag fracture path along intake end (large arrow) and separation...
Abstract
An exhaust diffuser assembly failed prematurely in service. The failure occurred near the intake end of the assembly and involved fracture in the diffuser cone (Corten), diffuser in take flange (type 310 stainless steel), diffuser exit flange (type 405 stainless steel), expansion bellows (Inconel 600), and bellows intake flange (Corten). Individual segments of the failed subassemblies were examined using various methods. The analysis indicated that the weld joint in the diffuser intake flange (type 310 stainless steel to Corten steel) contained diffusion-zone solidification cracks. The joints had been produced using the mechanized gas-metal arc welding process. Cracking was attributed to improper control of welding parameters, and failure was attributed to weld defects.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001325
EISBN: 978-1-62708-215-0
... Fig. 1 The cross-tee assembly as received, showing the underside. The letters A through D identity the legs of the cross assembly. Arrow indicates the location of the rupture. Fig. 2 Construction of the cross-tee, showing the 2-in. Schedule 80 pipe (A), joined to the 3-in. Schedule...
Abstract
A carbon steel piping cross-tee assembly which conveyed hydrogen sulfide (H7S) process gas at 150 to 275 deg C (300 to 585 deg F) with a maximum allowable operating pressure of 3 MPa (450 psig) ruptured at the toe of one of the welds at the cross after several years of service. The failure was initially thought to be the result of thermal fatigue, and the internal surfaces exhibited the “elephant hide” pattern characteristic of thermal fatigue. However metallographic failure analysis found that this pattern was the result of corrosion rather than thermal fatigue. Corrosion caused failure at this location because the weld was abnormally thin as fabricated. Thus, failure resulted from inadequate deposition of weld metal and subsequent wall thinning from internal corrosion. It was recommended that the cross-tee be replaced with a like component, with more careful attention to weld quality.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047745
EISBN: 978-1-62708-235-8
... Abstract A 321 stainless steel radar coolant-system assembly fabricated by torch brazing with AWS type 3A flux, failed at the brazed joint when subjected to mild handling before installation, after being stored for about two years. It was revealed by visual examination of the failed braze...
Abstract
A 321 stainless steel radar coolant-system assembly fabricated by torch brazing with AWS type 3A flux, failed at the brazed joint when subjected to mild handling before installation, after being stored for about two years. It was revealed by visual examination of the failed braze that the filler metal had not covered all mating surfaces. Lack of a metallurgical bond between the brazing alloy and stainless steel and instead mechanical bonding of the filler metal to an oxide layer on the stainless steel surface was revealed by examination of the broken joint at the cup. It was indicated by the thickness of the oxide layer that the steel surface was not protected from oxidation by the flux during torch heating. It was concluded that the failure was caused by lack of a metallurgical bond between the brazing alloy and the stainless steel. Components made of 347 stainless steel (better brazeability) brazed with a larger torch tip (wider heat distribution) and AWS type 3B flux (better filler-metal flow) were recommended for radar coolant-system assembly.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047749
EISBN: 978-1-62708-235-8
... Abstract A type 321 stainless steel (AMS 5570) pressure-tube assembly that contained a brazed reinforcing liner leaked during a pressure test. Fluorescent liquid-penetrant inspection revealed a circumferential crack extended approximately 180 deg around the tube parallel to the fillet...
Abstract
A type 321 stainless steel (AMS 5570) pressure-tube assembly that contained a brazed reinforcing liner leaked during a pressure test. Fluorescent liquid-penetrant inspection revealed a circumferential crack extended approximately 180 deg around the tube parallel to the fillet of the brazed joint. The presence of multiple origin cracks was indicated on the inside surface of a fractured portion of the crack surface. The cracks had originated adjacent to the braze joining the tube and the reinforcing liner and propagated through the wall to the outer surface. The residues on the inner surface of the tube were identified as fluorides from the brazing flux by chemical analysis. The nature of the crack, potential for corrosion due to residual fluorides and residual swaging stress in the tube prior to brazing, confirmed that failure of the tube end was due to stress-corrosion cracking. Stress relief treatment of tube before brazing and immediate cleaning of brazing residual fluorides was recommended to avoid failure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0045988
EISBN: 978-1-62708-235-8
... Abstract During installation, a clamp-strap assembly, specified to be type 410 stainless steel-austenitized at 955 to 1010 deg C (1750 to 1850 deg F), oil quenched, and tempered at 565 deg C (1050 deg F) for 2 h to achieve a hardness of 30 to 35 HRC, and used for securing the caging mechanism...
Abstract
During installation, a clamp-strap assembly, specified to be type 410 stainless steel-austenitized at 955 to 1010 deg C (1750 to 1850 deg F), oil quenched, and tempered at 565 deg C (1050 deg F) for 2 h to achieve a hardness of 30 to 35 HRC, and used for securing the caging mechanism on a star-tracking telescope, fractured transversely across two rivet holes closest to one edge of the pin retainer in a completely brittle manner. Comparison with a non-failed strap using microscopic examination, spectrographic analysis, and slow-bend tests showed that both fit the 410 stainless steel specs, but hardness and grain size were different. Reheat treatment of full-width specimens showed that coarse grain size (ASTM 2 to 3) was responsible for the brittle fracture, and excessively high temperature during austenitizing caused the large grain size in the failed strap. The fact that the hardness of the strap that failed was lower than the specified hardness of 30 to 35 HRC had no effect on the failure because that of the non-failed strap was even lower. Recommendation was that the strap should be heat treated as specified to maintain the required ductility and grain size.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047756
EISBN: 978-1-62708-235-8
... Abstract Waspaloy (AMS 5586) fabricated inner ring of a spray-manifold assembly failed transversely through the manifold tubing at the edge of the tube and support sleeve brazed joint. The assembly was brazed with AWS BAu-4 filler metal (AMS 4787). Fatigue beach marks propagating from...
Abstract
Waspaloy (AMS 5586) fabricated inner ring of a spray-manifold assembly failed transversely through the manifold tubing at the edge of the tube and support sleeve brazed joint. The assembly was brazed with AWS BAu-4 filler metal (AMS 4787). Fatigue beach marks propagating from extremities of a granular gold-tinted surface region adjacent to the tube-to-sleeve brazed joint and extending circumferentially were revealed by microscopic examination. Embrittlement of the tube caused by molten braze metal penetration along grain boundaries was evidenced by micrographs of a granular portion of the fracture. It was revealed by the initial fracture profile that fatigue cracks begun as an intergranular separation and subsequently became transgranular. It was concluded that failure of the tube was caused by excessive alloying between the braze metal and the Waspaloy. Reduced temperatures during torch debrazing or rebrazing were recommended to minimize molten braze metal penetration.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001703
EISBN: 978-1-62708-227-3
... Abstract This paper describes the metallurgical investigation of a broken spindle used to attach an antenna to the mast of a naval vessel. Visual inspections of both failed and intact fastener assemblies were carried out both on-board ship and in the laboratory followed by metallographic...
Abstract
This paper describes the metallurgical investigation of a broken spindle used to attach an antenna to the mast of a naval vessel. Visual inspections of both failed and intact fastener assemblies were carried out both on-board ship and in the laboratory followed by metallographic and fractographic examinations. Simulations were also performed on stressed material in a suitable environment to assess the relative importance of postulated failure mechanisms. Factors contributing to this failure including assembly procedures and applied preloads, service loading and environment, and material selection and specification. The discussion considers whether this failure was an isolated incident or is likely to be a fleet-wide problem, and suggests ways to prevent reoccurrence.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c0048087
EISBN: 978-1-62708-231-0
... Abstract Several of the welds in a hoist carriage tram-rail assembly fabricated by shielded metal arc welding the leg of a large T-section 1020 steel beam to the leg of a smaller T-section 1050 steel rail failed in one portion of the assembly. Four weld cracks and several indefinite indications...
Abstract
Several of the welds in a hoist carriage tram-rail assembly fabricated by shielded metal arc welding the leg of a large T-section 1020 steel beam to the leg of a smaller T-section 1050 steel rail failed in one portion of the assembly. Four weld cracks and several indefinite indications were found by magnetic-particle inspection. The cracks were revealed by metallographic examination to have originated in the HAZs in the rail section. Cracks in welds and in HAZs resulting from arcing the electrode adjacent to the weld and weld spatter were also revealed. The tram-rail assembly was concluded to have failed by fatigue cracking in HAZs. The fatigue cracking was initiated and propagated by vibration of the tram rail by movement of the hoist carriage on the rail. As a corrective measure, welding procedures were improved and the replacement rail assemblies were preheated and postheated.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001644
EISBN: 978-1-62708-219-8
... Abstract A large fan assembly deformed and broke at multiple locations. The user wanted to know whether the bearing pillow block fracture caused the fan blade assembly to crack, or whether a fan blade assembly fracture caused the pillow block to crack. Close inspection of the entire length...
Abstract
A large fan assembly deformed and broke at multiple locations. The user wanted to know whether the bearing pillow block fracture caused the fan blade assembly to crack, or whether a fan blade assembly fracture caused the pillow block to crack. Close inspection of the entire length of the crack showed the crack probably grew quite a while before it was large enough to cause the final catastrophic event. No evidence of fatigue cracks was visible on the broken pillow blocks. In the absence of some other contradictory information, the usual conclusion would be to presume that the fatigue crack predated the single overload crack.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0047621
EISBN: 978-1-62708-229-7
... Abstract The case and stiffener of an inner-combustion-chamber case assembly failed by completely fracturing circumferentially around the edge of a groove arc weld joining the case and stiffener to the flange. The assembly consisted of a cylindrical stiffener inserted into a cylindrical case...
Abstract
The case and stiffener of an inner-combustion-chamber case assembly failed by completely fracturing circumferentially around the edge of a groove arc weld joining the case and stiffener to the flange. The assembly consisted of a cylindrical stiffener inserted into a cylindrical case that were both welded to a flange. The case, stiffener, flange, and weld deposit were all of nickel-base alloy 718. It was observed that a manual arc weld repair had been made along almost the entire circumference of the original weld. Investigation (visual inspection, 0.5x macrographs, and 10x etched with 2% chromic acid plus HCl views) supported the conclusions that failure was by fatigue from multiple origins caused by welding defects. Ultimate failure was by tensile overload of the sections partly separated by the fatigue cracks. Recommendations included correct fit-up of the case, stiffener, and flange and more skillful welding techniques to avoid undercutting and unfused interfaces.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0047645
EISBN: 978-1-62708-229-7
... Abstract An outer fan-duct assembly of titanium alloy Ti-5Al-2.5Sn (AMS 4910) for a gas-turbine fan section cracked 75 mm (3 in.) circumferentially through a repair weld in an arc weld in the front flange-duct segment. Examination of the crack with a binocular microscope revealed no evidence...
Abstract
An outer fan-duct assembly of titanium alloy Ti-5Al-2.5Sn (AMS 4910) for a gas-turbine fan section cracked 75 mm (3 in.) circumferentially through a repair weld in an arc weld in the front flange-duct segment. Examination of the crack with a binocular microscope revealed no evidence of fatigue. A blue etch-anodize inspection showed the presence of an alpha case along the edges of the repair weld. The alpha case, a brittle oxide-enriched layer, forms when welds are inadequately shielded from the atmosphere during deposition. The brittleness of this layer caused transgranular cracks to form and propagate in tension under the thermal stresses created by the repair-weld heat input. The crack resulted from contamination and embrittlement of a repair weld that had received inadequate gas shielding. Thermal stresses cracked the oxide-rich layer that formed. The gas-shielding accessories of the welding torch were overhauled to ensure that leak-in or entrainment of air was eliminated. Also, the purity of the shielding-gas supplies was rechecked to make certain that these had not become contaminated.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047598
EISBN: 978-1-62708-217-4
Abstract
Two aircraft-engine tailpipes of 19-9 DL stainless steel (AISI type 651) developed cracks along longitudinal gas tungsten arc butt welds after being in service for more than 1000 h. Binocular-microscope examination of the cracks in both tailpipes revealed granular, brittle-appearing surfaces confined to the HAZs of the welds. Microscopic examination of sections transverse to the weld cracks showed severe intergranular corrosion in the HAZ. The fractures appeared to be caused by loss of corrosion resistance due to sensitization, that could have been induced by the temperatures attained during gas tungsten arc welding. Tests demonstrated the presence of sensitization in the HAZ of the gas tungsten arc weld. The aircraft engine tailpipe failures were due to intergranular corrosion in service of the sensitized structure of the HAZs produced during gas tungsten arc welding. All gas tungsten arc welded tailpipes should be postweld annealed by re-solution treatment to redissolve all particles of carbide in the HAZ. Also, it was suggested that resistance seam welding be used, because there would be no corrosion problem with the faster cooling rate characteristic of this technique.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047072
EISBN: 978-1-62708-217-4
... Abstract Postflight inspection of a gas-turbine aircraft engine that had experienced compressor stall revealed that the engine air-intake bullet assembly had dislodged and was seated against the engine-inlet guide vanes at the 3 o'clock position. The bullet assembly consisted of an outer...
Abstract
Postflight inspection of a gas-turbine aircraft engine that had experienced compressor stall revealed that the engine air-intake bullet assembly had dislodged and was seated against the engine-inlet guide vanes at the 3 o'clock position. The bullet assembly consisted of an outer aerodynamic shell and an inner stiffener shell, both of 1.3 mm (0.050 in.) thick aluminum alloy 6061-T6, and four attachment clips of 1 mm (0.040 in.) thick alclad aluminum alloy 2024-T42. Each clip was joined to the outer shell by 12 spot welds and was also joined to the stiffener. Analysis (visual inspection, dye-penetrant inspection, and 10x/150x micrographs of sections etched with Keller's reagent) supports the conclusion that the outer shell of the bullet assembly separated from the stiffener because the four attachment clips fractured through the shell-to-clip spot welds. Fracture occurred by fatigue that initiated at the notch created by the intersection of the faying surfaces of the clip and shell with the spot weld nuggets. The 6061 aluminum alloy shell and stiffener were in the annealed (O) temper rather than T6, as specified. Recommendations included heat treating the shell and stiffener to the T6 temper after forming.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0089722
EISBN: 978-1-62708-217-4
... Abstract A welded elbow assembly (AISI type 321 stainless steel, with components joined with ER347 stainless steel filler metal by gas tungsten arc welding) was part of a hydraulic-pump pressure line for a jet aircraft. The other end of the tube was attached to a flexible metal hose, which...
Abstract
A welded elbow assembly (AISI type 321 stainless steel, with components joined with ER347 stainless steel filler metal by gas tungsten arc welding) was part of a hydraulic-pump pressure line for a jet aircraft. The other end of the tube was attached to a flexible metal hose, which provided no support and offered no resistance to vibration. The line was leaking hydraulic fluid at the nut end of the elbow. Investigation supported the conclusion that failure was by fatigue cracking initiated from a notch at the root of the weld and was propagated by cyclic loading of the tubing as the result of vibration and inadequate support of the hose assembly. Recommendations included changing the joint design from a cylindrical lap joint to a square-groove butt joint. Also, an additional support was recommended for the hose assembly to minimize vibration at the elbow.
1