Skip Nav Destination
Close Modal
By
S.R. Freeman
By
S.M.R. Ziaei, A.H. Kokabi, J. Mostowfi
By
Fahmida Hossain, Veda-Anne Ulčickas
By
J.P. Howell, D.Z. Nelson
By
K.H. Subramanian, C.F. Jenkins
By
Jim Stott
By
Kevin J. Kennelley, Raymond D. Daniels
By
L. Scott Chumbley, Larry D. Hanke
Search Results for
anodizing equipment
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 75
Search Results for anodizing equipment
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Failure of a Buried Type 304L Stainless Steel Drain Line by Galvanic Attack
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046535
EISBN: 978-1-62708-234-1
... decrease near the point of failure of about 1.3 to 1.7 V. Recommendations included that the pipelines be asphalt coated and enclosed in a concrete trough with a concrete cover. Also, magnesium anodes, connected electrically to each line, should be installed at periodic intervals along their entire length...
Abstract
One of five underground drain lines intended to carry a highly acidic effluent from a chemical-processing plant to distant holding tanks failed in just a few months. Each line was made of 304L stainless steel pipe 73 mm (2 in.) in diam with a 5 mm (0.203 in.) wall thickness. Lengths of pipe were joined by shielded metal arc welding. Soundness of the welded joints was determined by water back-pressure testing after several lengths of pipe had been installed and joined. Before completion of the pipeline, a pressure drop was observed during back-pressure testing. An extreme depression in the backfill revealed the site of failure. Analysis (visual inspection, electrical conductivity, and soil analysis) supported the conclusions that the failure had resulted from galvanic corrosion at a point where the corrosivity of the soil was substantially greater than the average, resulting in a voltage decrease near the point of failure of about 1.3 to 1.7 V. Recommendations included that the pipelines be asphalt coated and enclosed in a concrete trough with a concrete cover. Also, magnesium anodes, connected electrically to each line, should be installed at periodic intervals along their entire length to provide cathodic protection.
Book Chapter
Analysis and Prevention of Corrosion-Related Failures
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003549
EISBN: 978-1-62708-180-1
...-control methods, equipment, and services; cost of labor attributed to corrosion management; cost of use of more expensive materials to lessen corrosion damage; and cost of lost revenue, loss of reliability, and loss of capital due to corrosion deterioration. Only selected industrial sectors were analyzed...
Abstract
This article provides an overview of the electrochemical nature of corrosion and analyzes corrosion-related failures. It describes corrosion failure analysis and discusses corrective and preventive approaches to mitigate corrosion-related failures of metals. These include: change in the environment; change in the alloy or heat treatment; change in design; use of galvanic protection; use of inhibitors; use of nonmetallic coatings and liners; application of metallic coatings; use of surface treatments, thermal spray, or other surface modifications; corrosion monitoring; and preventive maintenance.
Book Chapter
Cavitation Damage to Diesel Engine Cylinder Liners
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001486
EISBN: 978-1-62708-234-1
..., there are aspects that lend support to the corrosion hypothesis. It is considered that the impact forces may only serve to remove the protective oxide film normally present on the surface, and that the hare regions thus produced become anodic to the remainder and local corrosion cells are set up, the anodic regions...
Abstract
Cavitation damage of diesel engine cylinder liners is due to vibration of the cylinder wall, initiated by slap of the piston under the combined forces of inertia and firing pressure as it passes top dead center. The occurrence on the anti-thrust side may possibly result from bouncing of the piston. The exact mechanism of cavitation damage is not entirely clear. Two schools of thought have developed, one supporting an essentially erosive, and the other an essentially corrosive, mechanism. Measures to prevent, or reduce, cavitation damage should be considered firstly from the aspect of design, attention being given to methods of reducing the amplitude of the liner vibration. Attempts have been made to reduce the severity of attack by attention to the environment. Inhibitors, such as chromates, benzoate/nitrite mixtures, and emulsified oils, have been tried with varying success. Attempts have been made to reduce or prevent cavitation damage by the application of cathodic protection, and this has been found to be effective in certain instances of trouble on propellers.
Book Chapter
Failure Analysis: Sulfide Stress Corrosion Cracking and Hydrogen-Induced Cracking of A216-WCC Wellhead Flow Control Valve Body
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001820
EISBN: 978-1-62708-241-9
... a flowing fluid, such as sour gas, steam, or chemical compounds to compensate for the load disturbance and keep the regulated process variable as close as possible to the desired set point [ 3 ]. Scheduled and unscheduled shutdowns for repairing corrosion damage or replacing corroded equipments...
Abstract
A group of control valves that regulate production in a field of sour gas wellheads performed satisfactorily for three years before pits and cracks were detected during an inspection. One of the valves was examined using chemical and microstructural analysis to determine the cause of failure and provide preventive measures. The valve body was made of A216-WCC cast carbon steel. Its inner surface was covered with cracks stemming from surface pits. Investigators concluded that the failure was caused by a combination of hydrogen-induced corrosion cracking and sulfide stress-corrosion cracking. Based on test data and cost, A217-WC9 cast Cr–Mo steel would be a better alloy for the application.
Book Chapter
Analysis and Prevention of Environmental- and Corrosion-Related Failures
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006782
EISBN: 978-1-62708-295-2
... ). Such costs include the cost of corrosion-control methods, equipment, and services; cost of labor attributed to corrosion management; cost of using more expensive materials to lessen corrosion damage; and cost of lost revenue, loss of reliability, and loss of capital due to corrosion deterioration...
Abstract
Corrosion is the deterioration of a material by a reaction of that material with its environment. The realization that corrosion control can be profitable has been acknowledged repeatedly by industry, typically following costly business interruptions. This article describes the electrochemical nature of corrosion and provides the typical analysis of environmental- and corrosion-related failures. It presents common methods of testing of laboratory corrosion and discusses the processes involved in the prevention of environmental- and corrosion-related failures of metals and nonmetals.
Book Chapter
The Corrosion of Aluminum-Clad Nuclear Fuel in Wet Basin Storage
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001695
EISBN: 978-1-62708-229-7
..., the positive charged ions leave the surface of the anode into the electrolyte solution leaving electrons behind to flow through the metal to the cathode. At the cathode, the electrons are consumed by the hydrogen ions at the surface and hydrogen gas is liberated. The oxidation and deterioration of the anode...
Abstract
Large quantities of aluminum-clad spent nuclear materials have been in interim storage in the fuel storage basins at The Savannah River Site while awaiting processing since 1989. This extended storage as a result of a moratorium on processing resulted in corrosion of the aluminum clad. Examinations of this fuel and other data from a corrosion surveillance program in the water basins have provided basic insight into the corrosion process and have resulted in improvements in the storage facilities and basin operations. Since these improvements were implemented, there has been no new initiation of pitting observed since 1993. This paper describes the corrosion of spent fuel and the metallographic examination of Mark 31A target slugs removed from the K-basin storage pool after 5 years of storage. It discusses the SRS Corrosion Surveillance Program and the improvements made to the storage facilities which have mitigated new corrosion in the basins.
Book Chapter
Failure Analysis of High-Level Radioactive Waste Tank Purge
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001832
EISBN: 978-1-62708-241-9
... Abstract High-level radioactive wastes generated during the processing of nuclear materials are kept in large underground storage tanks made of low-carbon steel. The wastes consist primarily of concentrated solutions of sodium nitrate and sodium hydroxide. Each of the tanks is equipped...
Abstract
High-level radioactive wastes generated during the processing of nuclear materials are kept in large underground storage tanks made of low-carbon steel. The wastes consist primarily of concentrated solutions of sodium nitrate and sodium hydroxide. Each of the tanks is equipped with a purge ventilation system designed to continuously remove hydrogen gas and vapors without letting radionuclides escape. Several intergranular cracks were discovered in the vent pipe of one such system. The pipe, made of galvanized steel sheet, connects to an exhaust fan downstream of high-efficiency particulate air filters. The failure analysis investigation concluded that nitrate-induced stress-corrosion cracking was the cause of the failure.
Book Chapter
Forms of Corrosion
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
... to generalized uniform chemical attack—described in the section “Uniform Corrosion” —in which the anodes and cathodes of the cells are numerous, small, and close together. The analysis of corrosion failures and the development of suitable corrective measures require not only a basic understanding...
Abstract
This article addresses the forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. It describes the mechanisms of corrosive attack for specific forms of corrosion such as galvanic corrosion, uniform corrosion, pitting and crevice corrosion, intergranular corrosion, and velocity-affected corrosion. The article contains a table that lists combinations of alloys and environments subjected to selective leaching and the elements removed by leaching.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001691
EISBN: 978-1-62708-234-1
.... It causes equipment to fail because of perforation with only a small percent weight loss of the entire structure. It is difficult to detect pits because of their small size and because the pits are often covered with corrosion products. It is difficult to measure quantitatively and compare the extent...
Abstract
The Advanced Photon Source (APS) is a state-of-the-art synchrotron light source. The storage ring vacuum chamber is fabricated from 6061 extruded aluminum. Water connections to the vacuum chambers that were fabricated from 3003 aluminum had developed water leaks, which were subsequently remedied after considerable investigations.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... uniform chemical attack—described in the section “Uniform Corrosion”—in which the anodes and cathodes of the cells are numerous, small, and close together. The analysis of corrosion failures and the development of suitable corrective measures require not only a basic understanding of electrochemistry...
Abstract
Corrosion is the electrochemical reaction of a material and its environment. This article addresses those forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. Various forms of corrosion covered are galvanic corrosion, uniform corrosion, pitting, crevice corrosion, intergranular corrosion, selective leaching, and velocity-affected corrosion. In particular, mechanisms of corrosive attack for specific forms of corrosion, as well as evaluation and factors contributing to these forms, are described. These reviews of corrosion forms and mechanisms are intended to assist the reader in developing an understanding of the underlying principles of corrosion; acquiring such an understanding is the first step in recognizing and analyzing corrosion-related failures and in formulating preventive measures.
Book Chapter
Rapid Pitting Failure of Type 304 Stainless Steel Pipework
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001064
EISBN: 978-1-62708-214-3
... hydrotesting procedures was recommended to prevent similar failures. Bacterial corrosion Chemical processing equipment, corrosion Leakage Pipe, corrosion 304 UNS S30400 Biological corrosion Pitting corrosion Background The type 304 stainless steel pipelines, vessels, and tanks...
Abstract
Several hundred leaks were reported in the type 304 stainless steel pipelines, vessels, and tanks of a chemical plant at a tropical location within a few weeks after startup. Investigation of the failure involved a site visit, metallographic examination and analysis of the material, analysis of hydrotest waters, and microbiological examination of slime that had formed in certain pipework sections. It was determined that the failure resulted from microbially induced corrosion promoted by the use of poor-quality hydrotest water and uncontrolled hydrotesting practice. Use of appropriate hydrotesting procedures was recommended to prevent similar failures.
Book Chapter
Cavitation Erosion of a Water-Cooled Aluminum Alloy 6061-T6 Combustion Chamber
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046418
EISBN: 978-1-62708-234-1
... Abstract Equipment in which an assembly of in-line cylindrical components rotated in water at 1040 rpm displayed excessive vibration after less than one hour of operation. The malfunction was traced to an aluminum alloy 6061-T6 combustion chamber that was part of the rotating assembly. Analysis...
Abstract
Equipment in which an assembly of in-line cylindrical components rotated in water at 1040 rpm displayed excessive vibration after less than one hour of operation. The malfunction was traced to an aluminum alloy 6061-T6 combustion chamber that was part of the rotating assembly. Analysis (visual inspection, 100x/500x/800x micrographic examination, spectrographic analysis, and hardness testing) supported the conclusions that, as a result of improper heat treatment, the combustion-chamber material was too soft for successful use in this application. Misalignment of the combustion chamber and one or both of the mating parts resulted in eccentric rotation and the excessive vibration that caused malfunction of the assembly. Irregularities in the housing around the combustion chamber and temperature variation relating to the combustion pattern in the chamber were considered to be possible contributing factors to localization of the cavitation erosion. Recommendations included adopting inspection procedures to ensure that the specified properties of aluminum alloy 6061-T6 were obtained and that the combustion chamber and adjacent components were aligned within specified tolerances. In a similar situation, consideration should also be given to raising the pressure in the coolant in order to suppress the formation of cavitation bubbles.
Book Chapter
Stress Corrosion Cracking of 4340 Steel in Aircraft Ignition Starter Residues
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001560
EISBN: 978-1-62708-217-4
... as the reference electrode, and a platinum electrode as the auxiliary electrode. A PAR 175 universal programmer, PAR 173 potentiostat with model 376 logarithmic current converter interface, and a H.P. 7044 x-y recorder comprised the test equipment. ASTM standard G-59-78 entitled “Standard Practice for Conducting...
Abstract
Military aircraft use a cartridge ignition system for emergency engine starts. Analysis of premature failures of steel (AISI 4340) breech chambers in which the solid propellant cartridges were burned identified corrosion as one problem with an indication that stress-corrosion cracking may have occurred. A study was made for stress-corrosion cracking susceptibility of 4340 steel in a paste made of the residues collected from used breech chambers. The constant extension rate test (CERT) technique was employed and SCC susceptibility was demonstrated. The residues, which contained both combustion products from the cartridges and corrosion products from the chamber, were analyzed using elemental analysis and x-ray diffraction techniques. Electrochemical polarization techniques were also utilized to estimate corrosion rates.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001808
EISBN: 978-1-62708-241-9
... stainless steel (austenitic wrought stainless steel) UNS S31603 Introduction Unfortunately, numerous industries have experienced microbiologically influenced corrosion (MIC). Microbiologically influenced corrosion can cripple critical equipment, such as a fire sprinkler system, in relatively short...
Abstract
Six cases of failure attributed to microbiologically influenced corrosion (MIC) were analyzed to determine if any of the failures could have been avoided or at least predicted. The failures represent a diversity of applications involving typical materials, primarily stainless steel and copper alloys, in contact with a variety of liquids, chemistries, and substances. Analytical techniques employed include stereoscopic examination, energy dispersive x-ray spectroscopy (EDS), temperature and pH testing, and metallographic analysis. The findings indicate that MIC is frequently the result of poor operations or improper materials selection, and thus often preventable.
Book Chapter
Corrosive Attack of Stainless Steel Welds in Hot Brine
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0047606
EISBN: 978-1-62708-228-0
... and with a SEM in the laboratory. The examinations revealed a combination of failure mechanisms. The pitting failure of the welds was attributed to localized attack of an activated surface, in which anodic pits corroded rapidly. Additionally, SCC driven by residual welding stresses occurred in the base metal...
Abstract
Type 316L stainless steel pipes carrying brine at 120 deg C (250 deg F) and at a pH of about 7, failed by perforation at or near circumferential butt-weld seams. The failure was examined optically and radiographically in the field. Specimens were removed and examined metallographically and with a SEM in the laboratory. The examinations revealed a combination of failure mechanisms. The pitting failure of the welds was attributed to localized attack of an activated surface, in which anodic pits corroded rapidly. Additionally, SCC driven by residual welding stresses occurred in the base metal adjacent to the welds. Use of highly stressed austenitic stainless steels in high-chloride environments having a temperature above 65 deg C (150 deg F) should be discouraged. Solution annealing or shot peening to reduce residual stresses may be advisable. If heat treatment is not feasible after welding, the substitution of a more corrosion-resistant alloy, such as Incoloy 800 or 825, may be necessary.
Book Chapter
Cracking in a Gas-Turbine Fan-Duct Assembly Because of Contamination of a Repair Weld
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0047645
EISBN: 978-1-62708-229-7
... of fatigue. A blue etch-anodize inspection showed the presence of an alpha case along the edges of the repair weld. The alpha case, a brittle oxide-enriched layer, forms when welds are inadequately shielded from the atmosphere during deposition. The brittleness of this layer caused transgranular cracks...
Abstract
An outer fan-duct assembly of titanium alloy Ti-5Al-2.5Sn (AMS 4910) for a gas-turbine fan section cracked 75 mm (3 in.) circumferentially through a repair weld in an arc weld in the front flange-duct segment. Examination of the crack with a binocular microscope revealed no evidence of fatigue. A blue etch-anodize inspection showed the presence of an alpha case along the edges of the repair weld. The alpha case, a brittle oxide-enriched layer, forms when welds are inadequately shielded from the atmosphere during deposition. The brittleness of this layer caused transgranular cracks to form and propagate in tension under the thermal stresses created by the repair-weld heat input. The crack resulted from contamination and embrittlement of a repair weld that had received inadequate gas shielding. Thermal stresses cracked the oxide-rich layer that formed. The gas-shielding accessories of the welding torch were overhauled to ensure that leak-in or entrainment of air was eliminated. Also, the purity of the shielding-gas supplies was rechecked to make certain that these had not become contaminated.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003556
EISBN: 978-1-62708-180-1
..., and so on. Microbial Involvement in Corrosion Corrosion involves the oxidation of metal atoms, M , in an anodic region with a loss of electrons to a complementary reduction reaction in a cathodic region elsewhere on the metal surface ( Fig. 2 ). In the reduction reaction, an electron acceptor, X...
Abstract
This article focuses on the mechanisms of microbially induced or influenced corrosion (MIC) of metallic materials as an introduction to the recognition, management, and prevention of microbiological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It discusses the degradation of various protective systems, such as corrosion inhibitors and lubricants. The article describes the failure analysis of steel, iron, copper, aluminum, and their alloys. It also discusses the probes available to monitor conditions relevant to MIC in industrial systems and the sampling and analysis of conditions usually achieved by the installation of removable coupons in the target system. The article also explains the prevention and control strategies of MIC in industrial systems.
Book Chapter
Failure of Stainless Steel Piping in Stagnant Seawater
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0091394
EISBN: 978-1-62708-227-3
... is typical of pipe, neither very rough nor smooth. The relative surface area of the cathode to anode is large because of the expanse of the pipe involved. Corrosion by pitting starts, the dense acid puddles by gravity over a relatively wide area, and the remainder of the pipe section acts as a cathode...
Abstract
An austenitic stainless steel (type 316/316L stainless steel, schedule 40, 64 mm (2.5 in.) diam and larger) piping network used in the fire-sprinkler system in a large saltwater passenger and car ferry failed by rapid leaking. Operating conditions involved stagnant seawater at ambient temperatures. The pipe was in service for four weeks when three leaks appeared. Investigation (visual inspection and photographic images) supported the conclusion that the failure was caused by attack and corrosion damage of Cl ions in conditions that were ideal for three modes of highly accelerated pitting of austenitic stainless steel: the bottom surface, weld or HAZ pits, and crevices. Recommendations included proper material selection for piping, flanges, and weld rods with greater corrosion resistance. Proper filtering to prevent entrained abrasives and timely breakdown inspections were also advised.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003533
EISBN: 978-1-62708-180-1
... column, signal detection and display equipment, and vacuum system. It discusses the preparation of samples for observation using an SEM and describes the application of SEM in fractography. If the surface remains unaffected and undamaged by events subsequent to the actual failure, it is often a simple...
Abstract
The scanning electron microscopy (SEM) is one of the most versatile instruments for investigating the microstructure of metallic materials. This article highlights the development of SEM technology and describes the operation of basic systems in an SEM, including the electron optical column, signal detection and display equipment, and vacuum system. It discusses the preparation of samples for observation using an SEM and describes the application of SEM in fractography. If the surface remains unaffected and undamaged by events subsequent to the actual failure, it is often a simple matter to determine the failure mode by the use of an SEM. In cases where the surface is altered after the initial failure, the case may not be so straightforward. The article presents typical examples that illustrate these points. Image dependence on the microscope type and operating parameters is also discussed.
Book Chapter
Scanning Electron Microscopy for Failure Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006769
EISBN: 978-1-62708-295-2
... the development of SEM technology and operating principles of basic systems of SEM. The basic systems covered include the electron optical column, signal detection and display equipment, and the vacuum system. The processes involved in the preparation of samples for observation using an SEM are described...
Abstract
The scanning electron microscope (SEM) is one of the most versatile instruments for investigating the microscopic features of most solid materials. The SEM provides the user with an unparalleled ability to observe and quantify the surface of a sample. This article discusses the development of SEM technology and operating principles of basic systems of SEM. The basic systems covered include the electron optical column, signal detection and display equipment, and the vacuum system. The processes involved in the preparation of samples for observation using an SEM are described, and the application of SEM in fractography is discussed. The article covers the failure mechanisms of ductile failure, brittle failure, mixed-mode failure, and fatigue failure. Lastly, image dependence on microscope type and operating parameters is also discussed.
1