1-20 of 92 Search Results for

ammonia

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001161
EISBN: 978-1-62708-220-4
... Abstract A heat exchanger failed five years after going into service in an ammonia synthesis plant. Its container, made of Cr-Mo alloy steel (Material No. 1.7362), operated in an environment that did not exceed 400 deg C or 600 atm of hydrogen partial pressure. X-ray examination revealed...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001534
EISBN: 978-1-62708-220-4
... Abstract A detailed failure analysis was conducted on an ammonia refrigerant condenser tube component that failed catastrophically during its initial hours of operation. Evidence collected clearly demonstrated that the weld between a pipe and a dished end contained a sharp unfused region at its...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001172
EISBN: 978-1-62708-220-4
.... Ammonia Chemical processing equipment Decarburization Surface defects Nickel steel St 55.25 Hydrogen damage and embrittlement Unalloyed steels and the pure nickel steels frequently used in the past for highly stressed forgings are attacked by hydrogen under high pressure. The attack causes...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001174
EISBN: 978-1-62708-220-4
... Abstract A cooler of an ammonia synthesis plant was destroyed after three years of service due to the rupture of a distribution manifold. Synthesis gas under high pressure and at about 300 deg C, consisting of 10% NH3 and unconverted gas of 25% N2 and 75% H2 content, was water-cooled externally...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0060154
EISBN: 978-1-62708-234-1
... Abstract One of the coils in the radiant section of a primary reformer furnace used in an ammonia plant was found leaking. The bottom of one of seven outlet headers (made of ASME SA-452, grade TP316H, stainless steel) was revealed during examination to be ruptured. It was revealed...
Image
Published: 01 January 2002
Fig. 10 Effect of grain size on time-to-fracture in ammonia atmosphere. Data are for copper alloy C26800 (yellow brass, 66%) at various values of applied stress. More
Image
Published: 01 June 2019
Fig. 5 Microstructure of sheet. 500×. Electrolytic etch with ammonia water, 1.5 V. More
Image
Published: 01 December 2019
Fig. 4 Calculated crack length vs. time for ASB tested in seawater + ammonia showing subcritical growth (HTP-4) More
Image
Published: 01 December 2019
Fig. 8 ASB tested in seawater + ammonia (HTP-5) showing IG fracture More
Image
Published: 01 December 2019
Fig. 9 Polished cross section of ASB specimen tested in seawater + ammonia (HTP-5) showing a in-plane crack growth b longitudinal IG features in MVC area of fracture surface More
Image
Published: 01 December 2019
Fig. 7 Image of exemplar connectors after ammonia vapor testing More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091703
EISBN: 978-1-62708-229-7
... of the tubes, while water circulated through the tubes. Investigation (visual inspection, leak testing, history review, 100X micrographs etched in potassium dichromate, chemical analysis, and EDS and XRD analysis of internal tube deposits) supported the conclusion that the cause of the tube leaks was ammonia...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001389
EISBN: 978-1-62708-215-0
... to be a corrosion layer that resulted from exposure to ammonia in a humid atmosphere. Simulation tests confirmed that ammonia was the corrodent. The ammonia originated from the phenolic molding area of the plant. It was recommended that fumes from molding areas be vented outside the plant and that assembly, storage...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091617
EISBN: 978-1-62708-220-4
... Abstract A 680,000 kg (750 ton) per day ammonia unit was shut down following a fire near the outlet of the waste heat exchanger. The fire had resulted from leakage of ammonia from the type 316 stainless steel outlet piping. The outlet piping immediately downstream from the waste heat exchanger...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091694
EISBN: 978-1-62708-220-4
... because of unrelated tube failures. Sanitary (chlorinated) well water was generally used in the system, although filtered process make-up water (river water) containing ammonia was occasionally used. Investigation (visual inspection, chemical analysis, mercurous nitrate testing, unetched 5X micrographs...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001628
EISBN: 978-1-62708-234-1
..., the OD of the cylinder was exposed to liquid ammonia refrigerant containing lubricant from the compressor. The lubricant (mineral oil) was intended to separate from the ammonia and be recirculated through the compressor. Nondestructive portable optical microscopy, XRF, EDS, and XPS analyses showed...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001313
EISBN: 978-1-62708-215-0
... analysis of crystalline compounds in the deposit indicated the possible presence of ammonia. Failure was attributed to stress-corrosion cracking resulting from ammonia in the cooling water. It was recommended that an alternate tube material, such as a 70Cu-30Ni alloy or a titanium alloy, be used...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048795
EISBN: 978-1-62708-220-4
... Abstract A large pressure vessel designed for use in an ammonia plant failed during hydrostatic testing. It was fabricated from ten Mn-Cr-Ni-Mo-V steel plates which were rolled and welded to form ten cylindrical shell sections and three forgings of similar composition. The fracture surfaces...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001399
EISBN: 978-1-62708-220-4
... Abstract An air compressor was installed at a chemical plant in which nitric acid was produced by burning ammonia with air. It was a 5000 hp, 5-stage centrifugal machine running at 6000 rpm, compressing air to 5 atm. Failure of the first stage impeller occurred due to a segment from the back...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0091538
EISBN: 978-1-62708-233-4
... containing a fairly high concentration of chlorides (seawater typically contains about 19,000 ppm of dissolved chlorides) and traces of ammonia. Recommendations included redesign of the slots, shot-blasting the formed retainers, and changing the material to a different type of silicon bronze-copper alloy...