1-20 of 70 Search Results for

aluminum mill products

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006826
EISBN: 978-1-62708-329-4
... raisers and lead to tool steel product failure after final heat treatment or in service. Annealing the workpiece to a microstructure of fine carbide spheroids and lamellar pearlite will improve the machinability ( Ref 16 ). Dwelling cutting tools too long during profiling or pocketing aluminum alloy...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c0045911
EISBN: 978-1-62708-230-3
... amounts of sodium, calcium, potassium, aluminum, and sulfur, alkali, alkali earth, and other contaminants that completely permeated even the thin oxides on the fracture surfaces. Additional investigation of the purity of the steam itself as reported by the power plant showed that corrosion and cracks were...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003529
EISBN: 978-1-62708-180-1
... of metals composition in failure analysis work. If the milling to obtain chips for analysis is done in a machine shop where other machining is done, it may be necessary to set up a protective “tent” (for example, out of aluminum foil) around the chips being collected, to prevent contamination by airborne...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006835
EISBN: 978-1-62708-329-4
... of wrought products. The article addresses the types of flaws or defects that can be introduced during the steel forging process itself, including defects originating in the ingot-casting process. Defects found in nonferrous forgings—titanium, aluminum, and copper and copper alloys—also are covered...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006759
EISBN: 978-1-62708-295-2
... for determining the failure mechanism in those unobscured areas. Figure 3 shows microvoid coalescence (MVC) amidst a corrosion product in an aluminum alloy that failed by overload. The MVC regions not only showed the mechanism but also were used to perform qualitative chemical analysis of the base alloy...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001050
EISBN: 978-1-62708-214-3
... the head-shell gap was analyzed using qualitative emission spectroscopy. It was determined to have a composition similar to the shell chemistry presented above, but with minor amounts of (in decreasing order) lead, sodium, calcium, magnesium, aluminum, and titanium. The lead was probably from a sealing...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001628
EISBN: 978-1-62708-234-1
... elements are suggestive of the presence of erosion and/or corrosion debris from metallic components within the cooling system. The deposit that was scraped from the cylinder was found to contain primarily carbon and nickel, along with detectable iron, silicon, aluminum, calcium, sulfur, and oxygen...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006806
EISBN: 978-1-62708-329-4
... the substrate and the overlay to prevent the diffusion of tin from the overlay to the copper in the substrate. Aluminum Alloys that Contain Tin and Lead The alloying elements do not mix, thus forming small solid droplets in the aluminum that smear over the aluminum surface at times of inadequate...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... and industries that have experienced SCC failures include (this list is not exhaustive): Aerospace: Aluminum alloys in structural aircraft components such as landing gear and wing components, stainless steel tubing used as part of the hydraulic or fuel systems, high-strength low-alloy steel...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006813
EISBN: 978-1-62708-329-4
... can be satisfactorily extruded. Another example of a difficult-to-accommodate manufacturing condition versus the selected material is a brazed extended heat-transfer surface featuring aluminum alloy brazing sheet fin stock bonded to aluminized stainless steel. The optimal conditions require bonding...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006788
EISBN: 978-1-62708-295-2
... opportunities to improve operating processes and procedures related to the management of system integrity. Industry experience with corrosion-resistant alloys of steel, copper, and aluminum is reviewed. The article ends with a discussion on monitoring and preventing microbiologically influenced corrosion...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003556
EISBN: 978-1-62708-180-1
... the degradation of various protective systems, such as corrosion inhibitors and lubricants. The article describes the failure analysis of steel, iron, copper, aluminum, and their alloys. It also discusses the probes available to monitor conditions relevant to MIC in industrial systems and the sampling...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001817
EISBN: 978-1-62708-180-1
... of soldered or brazed joints, depth of penetration of welds, or occurrence of gas porosity can be revealed by proper sectioning. A critical combination of strain and subsequent heating can occasionally cause excessive grain growth. This has occurred in copper tubing, aluminum alloy tubing, or copper-clad...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... analysis, metallographic analysis, and simulated-service tests. It provides case studies for the analysis of SCC service failures and their occurrence in steels, stainless steels, and commercial alloys of aluminum, copper, magnesium, and titanium. aluminum alloys austenitic stainless steel carbon...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006801
EISBN: 978-1-62708-329-4
... and formability, it is rarely included in industry metal specifications or on the metal production-mill-certified material property documents. Reference Panels Manufacturing, engineering, and quality departments all are satisfied with each stamped-metal part at the start of production. The conditions used...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003560
EISBN: 978-1-62708-180-1
... tendency to cross slip and, hence, gall. Nickel and aluminum have poor galling resistance, whereas gold and copper have good galling resistance. Austenitic stainless steels with high work-hardening rates have relatively low stacking-fault energies and have been shown to have less tendency to gall...
Book Chapter

Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006790
EISBN: 978-1-62708-295-2
.... Dislocation cross slip is hindered by the presence of stacking faults, and a high stacking-fault energy indicates a low number of impeding stacking faults and an increased tendency to cross slip and hence gall. Nickel and aluminum have poor galling resistance, whereas gold and copper have good galling...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
.... This includes material composition, heat treatment, surface preparation (mill scale, coatings, surface finish, etc.), environmental composition (trace contaminants, dissolved gases, etc.), temperature, flow rate, solution concentration, and degree of agitation or aeration. In addition, corrosion product films...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
... preparation (mill scale, coatings surface finish, etc.), environmental composition (trace contaminants, dissolved gases, etc.), temperature, flow rate, solution concentration, and degree of agitation or aeration. In addition, corrosion product films and other changes in surface composition can also occur...