1-20 of 28 Search Results for

aluminum clad products

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001695
EISBN: 978-1-62708-229-7
... for up to 8 years. 1 The spent nuclear fuel is primarily irradiated uranium-aluminum alloy or depleted uranium metal fuel clad with a 30-mil type 1100 or 8001 aluminum alloy. After about two years of storage, visible corrosion product was evident on the depleted uranium metal Mk-31A target slugs...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001710
EISBN: 978-1-62708-229-7
... and uranium. Scratches and imperfections in protective oxide coating on the cladding Low flow/stagnant water. The increased storage time for the aluminum-clad fuel caused by a suspension of processing resulted in visible, nodular corrosion product on the surfaces of the fuel. Much...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001840
EISBN: 978-1-62708-241-9
... superalloy possesses a great corrosion resistance [ 1 ], the high production cost has restricted the individual application of this alloy. As a result, cladding procedure is applied to cover more economical materials with Inconel superalloy. Though fusion welding and cladding processes are inexpensive...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001387
EISBN: 978-1-62708-215-0
... powder was determined to be primarily iron. Cell malfunction was attributed to the accelerated dissolution of the carbon steel anode top, dislodgment of grains from the material, and subsequent closing of the small annular space between the anode and the cathode by debris from the anode top. Cladding...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006813
EISBN: 978-1-62708-329-4
... clearances, or occurrence of gas porosity can be revealed by proper sectioning. A critical combination of strain and subsequent heating can occasionally cause excessive grain growth. This has occurred in copper tubing, aluminum alloy tubing, or copper-clad steel tubing used for medium-pressure duty...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001455
EISBN: 978-1-62708-234-1
... Abstract Aluminum alloy BS.1476-HE.15 by virtue of its high strength and low density finds application in the form of bars or sections for cranes, bridges, and other such structures where a reduction in dead weight load and inertia stresses is advantageous. Bars and sections in H.15 alloy...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
.... Aluminum cladding can also be at risk. (g) Contact of two metals through a fluid trap can be avoided by using a drain, collection tray, or a deflector. Where dissimilar materials are to be joined, it is advisable to use a more noble metal in a joint ( Fig. 5a , b). Unfavorable area ratios should...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
... treated with copper preservatives can be corrosive to certain nails. Aluminum cladding can also be at risk. (g) Contact of two metals through a fluid trap can be avoided by using a drain, collection tray, or a deflector. Where dissimilar materials are to be joined, it is advisable to use a more...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... and industries that have experienced SCC failures include (this list is not exhaustive): Aerospace: Aluminum alloys in structural aircraft components such as landing gear and wing components, stainless steel tubing used as part of the hydraulic or fuel systems, high-strength low-alloy steel...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003549
EISBN: 978-1-62708-180-1
... in the study. When extrapolated to all U.S. industries, the total cost estimate is $276 billion, or more than 3% of the U.S. gross domestic product ( Ref 1 ). This great cost is a measure of the importance of corrosion management and an indication of the significance of potential cost saving that corrosion...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... analysis, metallographic analysis, and simulated-service tests. It provides case studies for the analysis of SCC service failures and their occurrence in steels, stainless steels, and commercial alloys of aluminum, copper, magnesium, and titanium. aluminum alloys austenitic stainless steel carbon...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001817
EISBN: 978-1-62708-180-1
... of soldered or brazed joints, depth of penetration of welds, or occurrence of gas porosity can be revealed by proper sectioning. A critical combination of strain and subsequent heating can occasionally cause excessive grain growth. This has occurred in copper tubing, aluminum alloy tubing, or copper-clad...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006782
EISBN: 978-1-62708-295-2
... regions and estimated the global cost of corrosion was 2.5 trillion U.S. dollars, which is equivalent to 3.4% of the global gross domestic product (GDP) for 2013. The annual cost in the United States alone was estimated at 451 billion U.S. dollars, or approximately 2.7% of the U.S. GDP ( Ref 1...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006804
EISBN: 978-1-62708-329-4
... can run lab exposure tests to attempt to categorize the observed heat tinting. Heat Tinting Fig. 15 Example of melted aluminum cladding on an insulated vessel. Aluminum melts at 657 °C (1215 °F), which places the areas of melting in heat exposure zone V. Often vessels will have...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001818
EISBN: 978-1-62708-180-1
... service. Effect of Metallurgical Discontinuities Nonmetallic inclusions, seams, laps, bursts, and pipes are common discontinuities found in wrought products that may cause premature failure. Shrinkage, gas porosity, and cold shuts are likely to occur in castings and can lead to failure, usually...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
... to plant personnel, reducing environmental discharges, and reducing costs associated with equipment downtime and loss of production. Conducting failure analyses can help companies meet industry and regulatory code and standard requirements, including Occupational Safety and Health Administration (OSHA...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006753
EISBN: 978-1-62708-295-2
... Abstract This article briefly introduces the concepts of failure analysis, including root-cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It initially provides definitions of failure on several different...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... Hastelloy X nickel-base superalloy 1205 2200 1 HX (17Cr-66Ni-bal Fe) 1150 2100 1 (a) Seamless tube. (b) Electric resistance welded tube Iron oxides alone are not protective above 550 °C (1020 °F) ( Ref 5 ). Chromium, aluminum, and/or silicon assist in forming scales, which...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001814
EISBN: 978-1-62708-241-9
... stainless steel cladding 3 mm overlay Cone plate separating combustion chamber from quench chamber 1-in. thick, 1¼ Cr–½ Mo steel (ASTM SA-387 Grade 11, Class 2) Quench ring Incoloy 825, nickel–iron–chromium alloy Dip tube ¼-in. thick tube, Incoloy 825, nickel–iron–chromium alloy Draft tube...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006828
EISBN: 978-1-62708-329-4
... metals to ceramics. Procedures for brazing various materials such as cast irons, steels, stainless steels, heat-resistant alloys, aluminum alloys, titanium alloys, copper alloys, reactive and refractory metals, and carbon and graphite are described in Welding, Brazing, and Soldering , Volume 6...