Skip Nav Destination
Close Modal
Search Results for
aluminum alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 399 Search Results for
aluminum alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001546
EISBN: 978-1-62708-217-4
... was detected in the extruded material; and mechanical properties satisfied specifications. Reference Reference 1. “The Significance of Cladding for Fatigue of Aluminum Alloys in Aircraft Structures,” by Schijve J. , Jacobs F.A. , Tromp P.J. , Netherlands National Aerospace...
Abstract
A longeron assembly constructed of Alclad 2024, some parts being in the T3 condition, others in the T42 condition, failed at a rivet hole. Plastic deformation at the crack site was found, but no plastic deformation was found in similar failed components. It was concluded that the numerous hairline cracks in the Alclad layer adjacent to the main fracture were fatigue cracks. In another case, bonded samples of 2024-T3 sheet were fatigue tested at various stress levels. Failures could be separated into three groups: those that failed in the adhesive bond, those that failed in the base material, and those that exhibited a dual failure. The last category failed in the adhesive bond and also showed a type of pitting on one face of the base material. In a third case, a 2024-T4 extrusion section was found to exhibit blistering after chemical milling. The presence of interconnecting microcracks between adjacent discontinuities supported a hydrogen blistering diagnosis.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0091350
EISBN: 978-1-62708-227-3
... Abstract Cracks occurred in a new ship hull after only three months in service. It was noted that the 5xxx series of aluminum alloys are often selected for weldability and are generally very resistant to corrosion. However, if the material has prolonged exposure at slightly elevated...
Abstract
Cracks occurred in a new ship hull after only three months in service. It was noted that the 5xxx series of aluminum alloys are often selected for weldability and are generally very resistant to corrosion. However, if the material has prolonged exposure at slightly elevated temperatures of 66 to 180 deg C (150 to 350 deg F), an alloy such as 5083 can become susceptible to intergranular corrosion. Investigation (visual inspection, corrosion testing, SEM images) supported the conclusion that the cracks occurred because during exposures to chloride solutions like seawater, galvanic couples formed between precipitates and the alloy matrix, leading to severe intergranular attack. No recommendations were made.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046512
EISBN: 978-1-62708-234-1
... Abstract Immediately after installation, leakage was observed at the mounting surface of several rebuilt hydraulic actuators that had been in storage for up to three years. At each joint, there was an aluminum alloy spacer and a vellum gasket. The mounting flanges of the steel actuators had...
Abstract
Immediately after installation, leakage was observed at the mounting surface of several rebuilt hydraulic actuators that had been in storage for up to three years. At each joint, there was an aluminum alloy spacer and a vellum gasket. The mounting flanges of the steel actuators had been nickel plated. During assembly of the actuators a lubricant containing molybdenum disulfide had been applied to the gaskets as a sealant. The vellum gasket was found to be electrically conductive, and analysis (visual inspection, 500x unetched micrographs, galvanic action testing, and x-ray diffraction) supported the conclusions that leakage was the result of galvanic corrosion of the aluminum alloy spacers while in storage. The molybdenum disulfide was apparently suspended in a volatile water-containing vehicle that acted as an electrolyte between the aluminum alloy spacer and the nickel-plated steel actuator housing. Initially, the vellum gasket acted as an insulator, but the water-containing lubricant gradually impregnated the vellum gasket, establishing a galvanic couple. Recommendations included discontinuing use of molybdenum disulfide lubricant as a gasket sealer, and assembling the actuators using dry vellum gaskets.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001022
EISBN: 978-1-62708-214-3
... Abstract Two complete aircraft undercarriage-leg 2014 aluminum alloy forgings and a number of sectional ends that exhibited cracks during nondestructive testing were examined to determine the extent of damage and the type of cracking. Cracks were primarily confined to the diaphragm...
Abstract
Two complete aircraft undercarriage-leg 2014 aluminum alloy forgings and a number of sectional ends that exhibited cracks during nondestructive testing were examined to determine the extent of damage and the type of cracking. Cracks were primarily confined to the diaphragm and adjoining wall between the steel sleeve and the steel diaphragm washer. Metallographic analysis and accelerated corrosion tests showed that the cracks had originated as stress-corrosion failures.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006402
EISBN: 978-1-62708-217-4
... or light sanding. The panels, subsequent to profiling and machining, were required to be penetrated inspected, shotpeened. H 2 SO 4 anodized, and coated with MIL-C-27725 integral fuel tank coating on the rib side. Fig. 1 Aluminum alloy 7075-T6 aircraft wing panel (a) showing unusual surface...
Abstract
New aircraft wing panels extruded from 7075-T6 aluminum exhibited an unusual pattern of circular black interrupted lines, which could not be removed by scouring or light sanding. The panels, subsequent to profiling and machining, were required to be penetrated inspected, shot peened, H2SO4 anodized, and coated with MIL-C-27725 integral fuel tank coating on the rib side. Scanning electron microscopy and microprobe analysis (both conventional energy-dispersive and Auger analyzers) showed that the anodic coating was applied over an improperly cleaned and contaminated surface. The expanding corrosion product had cracked and, in some places, had flaked away the anodized coating. The corrodent had penetrated the base aluminum in the form of subsurface intergranular attack to a depth of 0.035 mm (0.0014 in.). It was recommended that a vapor degreaser be used during cleaning prior to anodizing. A hot inhibited alkaline cleaner was also recommended during cleaning prior to anodizing. The panels should be dichromate sealed after anodizing. The use of deionized water was also recommended during the dichromate sealing operation. In addition, the use of an epoxy primer prior to shipment of the panels was endorsed. Most importantly, surveillance of the anodizing process itself was emphasized.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048095
EISBN: 978-1-62708-224-2
... Abstract The T-section cross member of the lifting sling failed in service while lifting a 966 kg (2130 lb) load. The L-section sling body and the cross member were made of aluminum alloy 5083 or 5086 and were joined by welding using aluminum alloy 4043 filler metal. The fracture was found...
Abstract
The T-section cross member of the lifting sling failed in service while lifting a 966 kg (2130 lb) load. The L-section sling body and the cross member were made of aluminum alloy 5083 or 5086 and were joined by welding using aluminum alloy 4043 filler metal. The fracture was found by visual examination to have occurred at the weld joining the sling body and the cross member. Inadequate joint penetration and porosity was revealed by macrographic examination of the weld. Lower silicon content and a higher magnesium and manganese content than the normal for alloy 4043 filler metal were found during chemical analysis. It was revealed by examination of the ends of the failed cross member that a rotational force that had been applied on the cross member caused it to fracture near the sling body. It was concluded that brittle fracture at the weld was caused by overloading which was attributed to the misalignment of the sling during loading. Aluminum alloy 5183 or 5356 filler metal was recommended to be used to avoid brittle welds.
Image
in Stress-Corrosion Cracking of Aluminum Alloy Fittings in a Marine Atmosphere
> ASM Failure Analysis Case Histories: Offshore, Shipbuilding, and Marine Equipment
Published: 01 June 2019
Fig. 1 Aluminum alloy coupling nut that cracked by stress corrosion in a marine atmosphere. (a) Overall view of coupling nut. (b) View of the crack. 6×. (c) and (d) Micrographs of a section through the crack near the origin, showing appearance before and after etching. Both 100×
More
Image
in Intergranular Corrosion of an Aluminum Alloy Ship Hull
> ASM Failure Analysis Case Histories: Offshore, Shipbuilding, and Marine Equipment
Published: 01 June 2019
Fig. 1 Cracking in a 5083 aluminum alloy ship hull caused by sensitization. Courtesy of MDE Engineers, Inc.
More
Image
in Intergranular Corrosion of an Aluminum Alloy Ship Hull
> ASM Failure Analysis Case Histories: Offshore, Shipbuilding, and Marine Equipment
Published: 01 June 2019
Fig. 2 Microstructure of 5083 aluminum alloy ship hull that has been sensitized. Courtesy of MDE Engineers, Inc.
More
Image
in Failure by Stress-Corrosion Cracking of an Ejection Seat Swivel
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 1 Opened crack (a) in aluminum alloy 7075-T651 ejection seat swivel fixture that failed by SCC. Note crack propagation markings that suggest the crack initiated on the inside wall of the fixture and woody appearance of the fracture. (b) Higher-magnification view of fracture surface from
More
Image
in Fracture of an Aluminum Alloy 2014-T6 Catapult-Hook Attachment Fitting for Naval Aircraft
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 1 Catapult-hook attachment fitting forged from aluminum alloy 2014-T6. The component cracked during straightening, then fractured in service
More
Image
in Stress-Corrosion Cracking of a Forged Aircraft Lug
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 1 Forged aluminum alloy 2014-T6 actuator barrel lug that failed by SCC. (a) View of the lug. 2×. Fracture at top was the initial fracture; arrow indicates location of a tiny region of pitting corrosion (on back side of lug) at which failure originated. Final fracture is at left. (b
More
Image
in Stress-Corrosion Cracking of Aircraft Hinge Brackets
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 1 Aluminum alloy 2014-T6 hinge bracket that failed by SCC in service. (a) Hinge bracket. Actual size. Arrow indicates crack. (b) Micrograph showing secondary cracking adjacent and parallel to the fracture surface. Etched with Keller's reagent. 250×
More
Image
in Stress-Corrosion Cracking of Pitostatic System Connectors
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 1 Top view (a) of cracked aluminum alloy 2024-T351 pitostatic connectors. Arrows indicate cracks. (b) Cross section of one connector showing elongated grains that were cut to form connector threads. 25× (c) Cross section showing intergranular cracking with multiple branching in one
More
Image
in Fatigue Fracture of Aluminum Alloy 7178-T6 Aircraft Fuel-Tank Floors
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 1 Aluminum alloy 7178-T6 floor of an aircraft fuel tank that failed by fatigue because of alkaline cleaning of the metal before painting. (a) Floor of the fuel tank showing extent of fracture. Dimensions given in inches. (b) Fracture surface showing fatigue marks and dimples indicating
More
Image
Published: 01 June 2019
Fig. 1 Corrosion (a) of aluminum alloy 6061-T6 aircraft fuel line (arrow). (b) Close-up of corrosion on fuel line. Note pitting and corrosion products. (c) Intergranular corrosion of the fuel line at area A from (a)
More
Image
in Aluminum Alloy 7178-T6 Aircraft Deck Plate That Failed in Service by Fatigue Cracking
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 1 Aluminum alloy 7178-T6 aircraft deck plate that failed in service by fatigue cracking. (a) Deck plate showing location of cracks at opposing flange joggles. Percentages are IACS values of electrical conductivity as measured at three locations. Approximately 0.2x. (b) Detail of crack 1
More
Image
in Corrosion of Aluminum Alloy 7075-T6 Wing Panel
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 1 Aluminum alloy 7075-T6 aircraft wing panel (a) showing unusual surface appearance. (b) SEM of the panel surface showing cracked anodized coating. 160x. (c) SEM showing the anodized coating flaking away and corrosion deposit under the coating. 85x. (d) Cross section of corrosion site
More
Image
Published: 01 June 2019
Fig. 1 Aluminum alloy 7079-T6 aircraft wing spar (a) showing crack (arrow). (b) Fracture surfaces of opened spar crack. Note clamshell marks at termination of the crack (left). Suspected multiple initiation sites are located between arrows. 1.5x. (c) Section of flange with surface at right
More
Image
in Corrosion Fatigue of Aircraft Nose Wheels
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 1 Aluminum alloy 2014-T6 aircraft nose wheel (a) that failed at the flange. (b) Close-up of tube well on wheel 31. (c) Appearance of flange failure on wheel 67. The topography is typical of other flange failures. (d) Close-up of wheel 31; note indentation (arrow). (e) Close-up of wheel
More