1-20 of 399 Search Results for

aluminum alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001546
EISBN: 978-1-62708-217-4
... was detected in the extruded material; and mechanical properties satisfied specifications. Reference Reference 1. “The Significance of Cladding for Fatigue of Aluminum Alloys in Aircraft Structures,” by Schijve J. , Jacobs F.A. , Tromp P.J. , Netherlands National Aerospace...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0091350
EISBN: 978-1-62708-227-3
... Abstract Cracks occurred in a new ship hull after only three months in service. It was noted that the 5xxx series of aluminum alloys are often selected for weldability and are generally very resistant to corrosion. However, if the material has prolonged exposure at slightly elevated...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046512
EISBN: 978-1-62708-234-1
... Abstract Immediately after installation, leakage was observed at the mounting surface of several rebuilt hydraulic actuators that had been in storage for up to three years. At each joint, there was an aluminum alloy spacer and a vellum gasket. The mounting flanges of the steel actuators had...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001022
EISBN: 978-1-62708-214-3
... Abstract Two complete aircraft undercarriage-leg 2014 aluminum alloy forgings and a number of sectional ends that exhibited cracks during nondestructive testing were examined to determine the extent of damage and the type of cracking. Cracks were primarily confined to the diaphragm...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006402
EISBN: 978-1-62708-217-4
... or light sanding. The panels, subsequent to profiling and machining, were required to be penetrated inspected, shotpeened. H 2 SO 4 anodized, and coated with MIL-C-27725 integral fuel tank coating on the rib side. Fig. 1 Aluminum alloy 7075-T6 aircraft wing panel (a) showing unusual surface...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048095
EISBN: 978-1-62708-224-2
... Abstract The T-section cross member of the lifting sling failed in service while lifting a 966 kg (2130 lb) load. The L-section sling body and the cross member were made of aluminum alloy 5083 or 5086 and were joined by welding using aluminum alloy 4043 filler metal. The fracture was found...
Image
Published: 01 June 2019
Fig. 1 Aluminum alloy coupling nut that cracked by stress corrosion in a marine atmosphere. (a) Overall view of coupling nut. (b) View of the crack. 6×. (c) and (d) Micrographs of a section through the crack near the origin, showing appearance before and after etching. Both 100× More
Image
Published: 01 June 2019
Fig. 1 Cracking in a 5083 aluminum alloy ship hull caused by sensitization. Courtesy of MDE Engineers, Inc. More
Image
Published: 01 June 2019
Fig. 2 Microstructure of 5083 aluminum alloy ship hull that has been sensitized. Courtesy of MDE Engineers, Inc. More
Image
Published: 01 June 2019
Fig. 1 Opened crack (a) in aluminum alloy 7075-T651 ejection seat swivel fixture that failed by SCC. Note crack propagation markings that suggest the crack initiated on the inside wall of the fixture and woody appearance of the fracture. (b) Higher-magnification view of fracture surface from More
Image
Published: 01 June 2019
Fig. 1 Catapult-hook attachment fitting forged from aluminum alloy 2014-T6. The component cracked during straightening, then fractured in service More
Image
Published: 01 June 2019
Fig. 1 Forged aluminum alloy 2014-T6 actuator barrel lug that failed by SCC. (a) View of the lug. 2×. Fracture at top was the initial fracture; arrow indicates location of a tiny region of pitting corrosion (on back side of lug) at which failure originated. Final fracture is at left. (b More
Image
Published: 01 June 2019
Fig. 1 Aluminum alloy 2014-T6 hinge bracket that failed by SCC in service. (a) Hinge bracket. Actual size. Arrow indicates crack. (b) Micrograph showing secondary cracking adjacent and parallel to the fracture surface. Etched with Keller's reagent. 250× More
Image
Published: 01 June 2019
Fig. 1 Top view (a) of cracked aluminum alloy 2024-T351 pitostatic connectors. Arrows indicate cracks. (b) Cross section of one connector showing elongated grains that were cut to form connector threads. 25× (c) Cross section showing intergranular cracking with multiple branching in one More
Image
Published: 01 June 2019
Fig. 1 Aluminum alloy 7178-T6 floor of an aircraft fuel tank that failed by fatigue because of alkaline cleaning of the metal before painting. (a) Floor of the fuel tank showing extent of fracture. Dimensions given in inches. (b) Fracture surface showing fatigue marks and dimples indicating More
Image
Published: 01 June 2019
Fig. 1 Corrosion (a) of aluminum alloy 6061-T6 aircraft fuel line (arrow). (b) Close-up of corrosion on fuel line. Note pitting and corrosion products. (c) Intergranular corrosion of the fuel line at area A from (a) More
Image
Published: 01 June 2019
Fig. 1 Aluminum alloy 7178-T6 aircraft deck plate that failed in service by fatigue cracking. (a) Deck plate showing location of cracks at opposing flange joggles. Percentages are IACS values of electrical conductivity as measured at three locations. Approximately 0.2x. (b) Detail of crack 1 More
Image
Published: 01 June 2019
Fig. 1 Aluminum alloy 7075-T6 aircraft wing panel (a) showing unusual surface appearance. (b) SEM of the panel surface showing cracked anodized coating. 160x. (c) SEM showing the anodized coating flaking away and corrosion deposit under the coating. 85x. (d) Cross section of corrosion site More
Image
Published: 01 June 2019
Fig. 1 Aluminum alloy 7079-T6 aircraft wing spar (a) showing crack (arrow). (b) Fracture surfaces of opened spar crack. Note clamshell marks at termination of the crack (left). Suspected multiple initiation sites are located between arrows. 1.5x. (c) Section of flange with surface at right More
Image
Published: 01 June 2019
Fig. 1 Aluminum alloy 2014-T6 aircraft nose wheel (a) that failed at the flange. (b) Close-up of tube well on wheel 31. (c) Appearance of flange failure on wheel 67. The topography is typical of other flange failures. (d) Close-up of wheel 31; note indentation (arrow). (e) Close-up of wheel More