Skip Nav Destination
Close Modal
Search Results for
alternate materials
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 263 Search Results for
alternate materials
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001717
EISBN: 978-1-62708-217-4
... of choosing an alternative material with a lower notch sensitivity. In addition, the temperature at which this alloy is treated must be monitored to prevent coarse grain growth. As a result of this investigation and in an effort to eliminate future failures, ARL assisted in developing a cadmium brush plating...
Abstract
The US Army Research Laboratory performed a failure investigation on a broken main landing gear mount from an AH-64 Apache attack helicopter. A component had failed in flight, and initially prevented the helicopter from safely landing. In order to avoid a catastrophe, the pilot had to perform a low hover maneuver to the maintenance facility, where ground crews assembled concrete blocks at the appropriate height to allow the aircraft to safely touch down. The failed part was fabricated from maraging 300 grade steel (2,068 MPa [300 ksi] ultimate tensile strength), and was subjected to visual inspection/light optical microscopy, metallography, electron microscopy, energy dispersive spectroscopy, chemical analysis, and mechanical testing. It was observed that the vacuum cadmium coating adjacent to the fracture plane had worn off and corroded in service, thus allowing pitting corrosion to occur. The failure was hydrogen-assisted and was attributed to stress corrosion cracking (SCC) and/or corrosion fatigue (CF). Contributing to the failure was the fact that the material grain size was approximately double the required size, most likely caused from higher than nominal temperatures during thermal treatment. These large grains offered less resistance to fatigue and SCC. In addition, evidence of titanium-carbo-nitrides was detected at the grain boundaries of this material that was prohibited according to the governing specification. This phase is formed at higher thermal treatment temperatures (consistent with the large grains) and tends to embrittle the alloy. It is possible that this phase may have contributed to the intergranular attack. Recommendations were offered with respect to the use of a dry film lubricant over the cadmium coated region, and the possibility of choosing an alternative material with a lower notch sensitivity. In addition, the temperature at which this alloy is treated must be monitored to prevent coarse grain growth. As a result of this investigation and in an effort to eliminate future failures, ARL assisted in developing a cadmium brush plating procedure, and qualified two Army maintenance facilities for field repair of these components.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001566
EISBN: 978-1-62708-229-7
..., characteristic of chloride-induced SCC in austenitic stainless steels. The failure resulted from chloride-induced SCC, possibly assisted by cyclic stress. The recommendation for alternate material for the desuperheater nozzle included nickel base alloys per ASTM B 564, Grades 600 or 800 titanium alloy per ASTM B...
Abstract
A desuperheater diffuser nozzle in the steam supply line failed within nine months of service in an 8.25 MN/sq m (1200 psig) steam line. The nozzle was an austenitic stainless steel casting in conformance to material. The nozzle had numerous cracks on the inside and outside surfaces, and the cracks had penetrated through the wall thickness in several areas. The fracture surfaces had distinct beach markings delineating the crack front, representative of crack propagation stages. The cracks were transgranular and, unlike classical corrosion-fatigue cracks, exhibited branching, characteristic of chloride-induced SCC in austenitic stainless steels. The failure resulted from chloride-induced SCC, possibly assisted by cyclic stress. The recommendation for alternate material for the desuperheater nozzle included nickel base alloys per ASTM B 564, Grades 600 or 800 titanium alloy per ASTM B 367, Grades C3/C4, or ferritic stainless steel alloy per ASTM 182, Grade FXM27.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091703
EISBN: 978-1-62708-229-7
... the ammonia (prohibitively expensive in cost and time) or using an alternate material (such as a 70Cu-30Ni alloy or a more expensive titanium alloy) that is resistant to ammonia corrosion as well as to chlorides and sulfur species. Air cooling Ammonia Hydroelectric generators Hydroelectric power...
Abstract
An arsenical admiralty brass (UNS C44300) finned tube in a generator air cooler unit at a hydroelectric power station failed. The unit had been in operation for approximately 49,000 h. The cooling medium for the tubes was water from a river. Air flowed over the finned exterior of the tubes, while water circulated through the tubes. Investigation (visual inspection, leak testing, history review, 100X micrographs etched in potassium dichromate, chemical analysis, and EDS and XRD analysis of internal tube deposits) supported the conclusion that the cause of the tube leaks was ammonia-induced SCC. Because the cracks initiated on the inside surfaces of the tubes and because the river water was not treated before it entered the coolers, the ammonia was likely present in the river water and probably concentrated under the internal deposits. Recommendations included either eliminating the ammonia (prohibitively expensive in cost and time) or using an alternate material (such as a 70Cu-30Ni alloy or a more expensive titanium alloy) that is resistant to ammonia corrosion as well as to chlorides and sulfur species.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001400
EISBN: 978-1-62708-235-8
... indicated inherent residual stresses as being primarily responsible. Tests carried out tend to suggest that stress relief was not carried out. For the replacement plant, consideration of stress relieving or the use of an alternative material was advised. Absorbers (equipment) Carbon dioxide...
Abstract
Following the discovery numerous cracks at many of the welded seams of a mild steel CO2 absorber vessel, a sample for examination was removed from the worst affected area where repairs had been effected. A 12 in. long circumferential crack was visible. Specimens were taken to cover the several locations of cracking which, in all cases, were found to be similar and of the intergranular type filled with oxide or corrosion product. The association of the cracks with the weld seams indicated that contraction stresses from welding were primarily responsible. Failure of the absorber vessel was found to be due to stress corrosion. Although the active agent present was not positively identified, the aqueous solution of monoethanolamine was thought to be the most probable. The origin of the stresses was not elucidated but the association of the cracks with the welded seams indicated inherent residual stresses as being primarily responsible. Tests carried out tend to suggest that stress relief was not carried out. For the replacement plant, consideration of stress relieving or the use of an alternative material was advised.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001313
EISBN: 978-1-62708-215-0
... of the tube and XRD analysis of crystalline compounds in the deposit indicated the possible presence of ammonia. Failure was attributed to stress-corrosion cracking resulting from ammonia in the cooling water. It was recommended that an alternate tube material, such as a 70Cu-30Ni alloy or a titanium alloy...
Abstract
An arsenical admiralty brass (UNS C44300) finned tube in a generator air cooler unit at a hydroelectric power station failed. The unit had been in operation for approximately 49,000 h. Stereomicroscopic examination revealed two small transverse cracks that were within a few millimeters of the tube end, with one being a through-wall crack. Metallographic examination of sections containing the cracks showed branching secondary cracks and a transgranular cracking mode. The cracks appeared to initiate in pits. EDS analysis of a friable deposit found on the inside diameter of the tube and XRD analysis of crystalline compounds in the deposit indicated the possible presence of ammonia. Failure was attributed to stress-corrosion cracking resulting from ammonia in the cooling water. It was recommended that an alternate tube material, such as a 70Cu-30Ni alloy or a titanium alloy, be used.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046476
EISBN: 978-1-62708-234-1
... and ductility are developed in Hastelloy N when the alloy is solution heat treated at 1120 deg C (2050 deg F) and is either quenched in water or rapidly cooled in air. An alternative, but less suitable, material for the pot was type 347 (stabilized grade) stainless steel. After welding, the 347 should be stress...
Abstract
A fused-salt electrolytic-cell pot containing a molten eutectic mixture of sodium, potassium, and lithium chlorides and operating at melt temperatures from 500 to 650 deg C (930 to 1200 deg F) exhibited excessive corrosion after two months of service. The pot was a welded cylinder with 3-mm thick type 304 stainless steel walls and was about 305 mm (12 in.) in height and diam. Analysis (visual inspection and 500x micrographs etched with CuCl2) supported the conclusions that the pot failed by intergranular corrosion because an unstabilized austenitic stainless steel containing more than 0.03% carbon had been sensitized and placed in contact in service with a corrosive medium at temperatures in the sensitizing range. Recommendations included changing material for the pot from type 304 stainless steel to Hastelloy N (70Ni-17Mo-7Cr-5Fe). Maximum corrosion resistance and ductility are developed in Hastelloy N when the alloy is solution heat treated at 1120 deg C (2050 deg F) and is either quenched in water or rapidly cooled in air. An alternative, but less suitable, material for the pot was type 347 (stabilized grade) stainless steel. After welding, the 347 should be stress relieved at 900 deg C (1650 deg F) for 2 h and rapidly cooled to minimize residual stresses.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001473
EISBN: 978-1-62708-229-7
...Abstract Abstract A combination of adverse factors was present in the disruption of a turbo-alternator gearbox. The major cause was the imposition of a gross overload far in excess of that for which the gearbox was designed. The contributory factors were a rim material (EN9 steel...
Abstract
A combination of adverse factors was present in the disruption of a turbo-alternator gearbox. The major cause was the imposition of a gross overload far in excess of that for which the gearbox was designed. The contributory factors were a rim material (EN9 steel) that was inherently notch-sensitive and liable to rupture in a brittle manner. Discontinuities were present in the rims formed by the drain holes drilled in their abutting faces, and possibly enhanced by the stress-raising effect of microcracks in the smeared metal at their surfaces It is probable that the load reached a value in excess of the yield point within the delay time of the material so when the fracture was initiated, it was preceded by several microcracks giving rise to the propagation of a brittle fracture.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001545
EISBN: 978-1-62708-236-5
... with a recommendation that carbon steel be the alternative bellows material. Cracks Fortunately, preventive or corrective action was possible in these examples before any serious problem developed. This is not always the case. There is no fail-safe failure analysis procedure. The possibility of error can...
Abstract
The presence of secondary, branching intergranular stress-corrosion cracking in a type 440C stainless bearing caused the analyst to overlook the real culprit, which was a mechanically-initiated, primary transgranular crack that propagated through the steel's hard chromium carbide. Failure was actually caused by overload. Had the original conclusion been accepted, a relatively exotic alloy would have been specified. In another case, brass heat exchanger tube failure was automatically attributed to attack by an acidic cleaner, and a decision was made to stop using the solution. A more thorough analysis showed failure was caused by tube vibration. In a third case, a type 304 stainless steel bellows in a test loop was thought to have failed because of chloride stress corrosion. The report concluded with a recommendation that carbon steel be used as an alternative bellows material. Caustic, not chloride, stress corrosion was the culprit. Had material substitutions been made on the original premise of countering chloride stress corrosion, most of the loop's highly stressed components would have eventually failed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001459
EISBN: 978-1-62708-234-1
.... Bend properties Corrosion fatigue Fatigue (materials) Fracture characteristics Mechanics Stresses Torsional fatigue Irons and steels Fatigue fracture Introduction Fatigue Crack Characteristics Characteristic Features of Basic Crack Types Uni-Directional Bending Alternating...
Abstract
Fundamentals of fatigue failure are outlined. Addressed are fatigue crack characteristics, basic crack types, unidirectional bending, alternate bending, rotary bending, torsion, direct stress, and combined stress. Stress cycle, endurance limits, under and overstressing, stress concentration, and surface condition are discussed. Sections are devoted to fatigue crack assessment, corrosion relation to fatigue failure, and the micro-mechanisms of fatigue failure. Materials considered include steels. Photographs of service failures are used to illustrate features alluded to in the text.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001401
EISBN: 978-1-62708-220-4
... immediately adjacent to the weld or a short distance from it and on alternate sides. Microscopical examination did not reveal any intergranular carbide precipitation, such as is well known to result in the weld-decay mode of failure. It was concluded that the primary cause of failure was stress-corrosion...
Abstract
Following disruption of the austenitic stainless steel basket of a hydro-extractor used for the separation of crystals of salt (sodium chloride) from glycerin, samples of the broken parts were analyzed. Examination revealed that the fish-plates joining the reinforcing hoops had broken, the shell had split from top to bottom adjacent to the weld, the top and bottom cover plates had become loose, all the rivets having pulled out, and the shaft was also found to be bent. Fracture took place in an irregular manner and was of the shear type towards both ends; it occurred immediately adjacent to the weld or a short distance from it and on alternate sides. Microscopical examination did not reveal any intergranular carbide precipitation, such as is well known to result in the weld-decay mode of failure. It was concluded that the primary cause of failure was stress-corrosion cracking arising from the combined effect of residual stresses and the corrosive effect of the material being centrifuged. If the shell had been stress-relieved after fabrication, the failure likely would not have occurred.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0090451
EISBN: 978-1-62708-218-1
... the parts to alternating temperatures of -40 and 180 deg C (-40 and 360 deg F)). Prior to molding, the resin had reportedly been dried at 135 deg C (275 deg F). The drying process usually lasted 6 h, but occasionally, the material was dried overnight. Comparison investigation (visual inspection, 20x SEM...
Abstract
Cracking occurred within the plastic jacket (injection molded from an impact-modified, 15% glass-fiber-reinforced PET resin.) of several assemblies used in a transportation application during an engineering testing regimen which involved cyclic thermal shock (exposing the parts to alternating temperatures of -40 and 180 deg C (-40 and 360 deg F)). Prior to molding, the resin had reportedly been dried at 135 deg C (275 deg F). The drying process usually lasted 6 h, but occasionally, the material was dried overnight. Comparison investigation (visual inspection, 20x SEM views, micro-FTIR, and analysis using DSC and TGA) with non-failed parts supported the conclusion that that the failure was via brittle fracture associated with the exertion of stresses that exceeded the strength of the resin as-molded caused by the disparity in the CTEs of the PET jacket and the mating steel sleeve. The drying process had exposed the resin to relatively high temperatures, which caused substantial molecular degradation, thus limiting the part's ability to withstand the stresses. The drying temperature was found to be significantly higher than the recommendation for the PET resin, and the testing itself exposed the parts to temperatures above the recognized limits for PET.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046469
EISBN: 978-1-62708-229-7
... is readily susceptible to dezincification. Recommendations included replacing the material with copper alloy C68700 (arsenical aluminum brass), which contains 0.02 to 0.06% As and is highly resistant to dezincification. Copper alloy C44300 (inhibited admiralty metal) could be an alternative selection...
Abstract
After about 17 years in service, copper alloy C27000 (yellow brass, 65% Cu) innercooler tubes in an air compressor began leaking cooling water, causing failure and requiring replacement. The tubes were 19 mm in diam and had a wall thickness of 1.3 mm (0.050 in.). The cooling water that flowed through the tubes was generally sanitary (chlorinated) well water; however, treated recirculating water was sometimes used. Analysis (visual inspection, 9x and 75x unetched micrographs, and spectrochemical analysis) showed a thick uniform layer of porous, brittle copper on the inner surface of the tube, extending to a depth of about 0.25 mm (0.010 in.) into the metal, plug-type dezincification extending somewhat deeper into the metal. This supported the conclusion that failure of the tubes was the result of the use of an uninhibited brass that has a high zinc content and therefore is readily susceptible to dezincification. Recommendations included replacing the material with copper alloy C68700 (arsenical aluminum brass), which contains 0.02 to 0.06% As and is highly resistant to dezincification. Copper alloy C44300 (inhibited admiralty metal) could be an alternative selection for this application; however, this alloy is not as resistant to impingement attack as copper alloy C68700.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001635
EISBN: 978-1-62708-221-1
...Abstract Abstract A hoist lift hose on a loader failed catastrophically. The hoses were a 100R13 type (as classified in AS3791-1991) with 50.8 mm nominal internal diameter. They consisted of six alternating spirals of heavy wire around a synthetic rubber inner tube with a synthetic rubber outer...
Abstract
A hoist lift hose on a loader failed catastrophically. The hoses were a 100R13 type (as classified in AS3791-1991) with 50.8 mm nominal internal diameter. They consisted of six alternating spirals of heavy wire around a synthetic rubber inner tube with a synthetic rubber outer sheath. Failure of the lift hose was approximately 50 to 100 mm away from the "upper" end of the hose, with the straight coupling that attaches to the hydraulic system. The return hose was in much better condition, with no apparent deformation and only small areas of mechanical damage to the outer sheath. There were two modes of failure of the wire: tensile and corrosion related. The predominant corrosion mechanism appeared to be crevice corrosion related, with the corrosion being driven by the retention of water by the cover material around the wire strands. In this case study (and in most wire-reinforced hydraulic hoses), the wire reinforcing strands were a medium-carbon steel in the cold drawn condition. Radiographic nondestructive testing (NDT) was recommended to determine when a hydraulic hose should be replaced.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001273
EISBN: 978-1-62708-215-0
... be considered a suitable material for this application. There are several possible alternate materials that could be used to replace the 304 stainless steel hanger rods. One possibility is a nickel-iron-chromium alloy such as Inconel 625 or Incoloy 825. High-nickel alloys such as these have a good...
Abstract
One-quarter inch diameter 304 stainless steel cooling tower hanger rods failed by chloride-induced stress-corrosion cracking (SCC). The rods were located in an area of the cooling tower where the air contains drop lets of water below the mist eliminators and above the flow of water The most extensive cracking was observed in the rod nuts and in the portions of the rod which were covered by the nuts. Cracking was transgranular with extensive branching, and some corrosion occurred along the crack paths. The clamping force from the nuts used on both sides of the supported member and residual stresses from thread rolling likely contributed to the stresses for the cracking mechanism, along with the stresses induced by the supported load. The external surfaces of the hanger rods were reportedly exposed to a chloride-containing atmosphere, likely due to the biocide. Type 304 stainless steel is not a suitable material for this application, and materials that resist SCC, such as Inconel, should be considered.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001399
EISBN: 978-1-62708-220-4
.... As immediate measures the air intake was modified to reduce the pick-up of acid vapours and the impeller of the replacement spare impeller coated with an epoxy resin pending the supply of a new impeller in an alternative material. In considering such alternatives, the chloride content of the deposit...
Abstract
An air compressor was installed at a chemical plant in which nitric acid was produced by burning ammonia with air. It was a 5000 hp, 5-stage centrifugal machine running at 6000 rpm, compressing air to 5 atm. Failure of the first stage impeller occurred due to a segment from the back plate becoming detached. On the remaining portion, cracks were visible running between the holes for rivets by which the vanes were attached. Metallographic examination of selected sections from the backplate revealed the material to be in the hardened and tempered condition, and the cracking to have initiated on the internal surface of the plate at the crevice between the plate and the vane. It was evident that the impeller failed by stress-corrosion cracking, which initiated in the crevice between the vanes and back plate and propagated through the plate along the line of the rivets where working stresses would be greatest. The compressor intake was situated in the vicinity of nitric acid pumps which had a history of leakage troubles, and which had evidently given rise to the nitrates found on the impeller.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001380
EISBN: 978-1-62708-215-0
... an alternative material that has a higher value of K ISCC . It was strongly recommended that vacuum deposited cadmium be used in place of electrolytic cadmium plating. The vacuum deposition process will prevent HE of the material during plating that can be induced by the electrolytic plating process...
Abstract
One of the two AISI 4340 steel pitch horn bolts from the main rotor hub assembly failed while in service. Optical microscope revealed evidence of corrosion pitting in regions adjacent to the fracture. Fractographic examination utilizing a scanning electron microscope revealed multiple crack origins which assumed a “thumbnail” shape and displayed surface morphologies which resulted from intergranular decohesion. Many of the crack sites initiated from corrosion pits. Energy dispersive spectroscope performed on areas within the crack initiation site showed the presence of chlorides. The failure was attributed to stress-corrosion cracking. Short- and long-term recommendations to prevent future failures are given.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001458
EISBN: 978-1-62708-220-4
... that an alternative material, not susceptible to stress-corrosion cracking in the presence of chlorides, would have been used. It is obviously in the interests of any user to let the manufacturer know the precise nature of the substance it is desired to process and, in particular, the presence of any contaminants...
Abstract
Two cases of failure of centrifuge baskets were investigated. The first involved a centrifuge running at approximately 1000 rpm. The basket was constructed from a perforated sheet of stainless steel rolled into a cylinder and joined by a single vee longitudinal weld. Detailed examination showed the weld had not completely penetrated the full depth of the section. The fracture faces showed a gradually progressing fatigue crack developing from a notch, formed by the lack of penetration, at the root of the weld. Microscopic examination of the parent plate showed it was a typical titanium stabilized austenitic steel. It is probable that had the basket been subjected to a periodic inspection by a competent person, this failure would not have occurred. The second case concerned a continuous duty centrifuge operating at 2200 rpm. Fracture had occurred at the circumferential weld attaching the stainless steel skirt to the basket rim and also in the region of the vertical weld which was made when the skirt was formed into a cone. Stress-corrosion cracking of the skirt material, which contained residual stresses due to cold-rolling, had been caused by the presence of sodium chloride.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001783
EISBN: 978-1-62708-241-9
...). It should be apparent that the vast difference in hardness between the indenter and the bushing should cause rapid wear to occur. As a result it was necessary to look at alternate materials that can still maintain high hardness but provide a more reasonable to match the bushing. Composition of D2 tool...
Abstract
An aluminum bronze bushing that serves as a guide in a crimping machine began to fail after 50,000 cycles or approximately two weeks of operation. Until then, typical run times had been on the order of months. Although the bushings are replaceable and relatively inexpensive, the cost of downtime adds up quickly while operators troubleshoot and swap out worn components. Initially, the quality of the bushings came into question, but after a detailed analysis of the entire crimping mechanism, several other issues emerged that were not previously considered. As a result, the investigation provides information on not only better materials, but also design changes intended to reduce wear and increase service life.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001536
EISBN: 978-1-62708-229-7
... to general corrosion and to galvanic corrosion in contact with the mating graphite ring. The solution to this problem appears to be the use of an alternate material for the wear ring. The other commonly used binder phase in cemented WC composites is cobalt, but its use in nuclear plants is precluded...
Abstract
Argonne National Laboratory has conducted analyses of failed components from nuclear power-generating stations since 1974. The considerations involved in working with and analyzing radioactive components are reviewed here, and the decontamination of these components is discussed. Analyses of four failed components from nuclear plants are then described to illustrate the kinds of failures seen in service. The failures discussed are (1) intergranular stress-corrosion cracking of core spray injection piping in a boiling water reactor, (2) failure of canopy seal welds in adapter tube assemblies in the control rod drive head of a pressurized water reactor, (3) thermal fatigue of a recirculation pump shaft in a boiling water reactor, and (4) failure of pump seal wear rings by nickel leaching in a boiling water reactor.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006779
EISBN: 978-1-62708-295-2
... strength, S u , may not be the proper reaction and remedy for a fatigue failure. The selection of an alternative material with a higher strength (and possibly lower toughness) will not necessarily result in an improvement of the fatigue strength, because of the observation that an increased strength...
Abstract
Fatigue failures may occur in components subjected to fluctuating (time-dependent) loading as a result of progressive localized permanent damage described by the stages of crack initiation, cyclic crack propagation, and subsequent final fracture after a given number of load fluctuations. This article begins with an overview of fatigue properties and design life. This is followed by a description of the two approaches to fatigue, namely infinite-life criterion and finite-life criterion, along with information on damage tolerance criterion. The article then discusses the characteristics of fatigue fractures followed by a discussion on the effects of loading and stress distribution, and material condition on the microstructure of the material. In addition, general prevention and characteristics of corrosion fatigue, contact fatigue, and thermal fatigue are also presented.