Skip Nav Destination
Close Modal
Search Results for
alpha tin
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 22
Search Results for alpha tin
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001843
EISBN: 978-1-62708-241-9
... as the failure mechanism in the investigation. electrical connectors tin pest plating defect copper alpha tin x-ray diffraction temperature copper (copper contact alloy, general) tin-bismuth (tin-bismuth plating alloy, general) Introduction The element tin has three crystalline forms...
Abstract
The operator of an electric transit system purchased a large number of tin-plated copper connectors, putting some in service and others in reserve. Later, when some of the reserve connectors were inspected, the metal surfaces were covered with spots consisting of an ash-like powder and the plating material had separated from the substrate in many areas. Several connectors, including some that had been in service, were examined to determine what caused the change. The order stated that the connectors were to be coated with a layer of tin-bismuth (2% Bi) to guard against tin pest, a type of degradation that occurs at low temperatures. Based on the results of the investigation, which included SEM/EDS analysis, inductively coupled plasma spectroscopy, and x-ray diffraction, the metal surfaces contained less than 0.1% Bi and thus were not adequately protected against tin pest, which was confirmed as the failure mechanism in the investigation.
Image
Published: 15 May 2022
)aluminum; Ir(ppy) 3 : tris[2-phenylpyridinato-C2,N]iridium(III); TCTA: tris(4-carbazoyl-9-ylphenyl)amine; A-NPD: (4,4-bis[N-1-naphthyl-N-phenylamino]biphenyl, alpha-NPD); BPAPF: 9,9-bis[4-(N,N-bis(biphenyl-4-yl)amino)phenyl]-9H-fluorine; ITO: indium tin oxide. Courtesy of ION-TOF GmbH
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001410
EISBN: 978-1-62708-220-4
... Abstract A brass elbow that formed one termination of a steam heating coil failed adjacent to the brazed connection after ten years of service. Chemical analysis showed that the elbow was made from a 60-40 CuZn brass containing 3% lead and 1% tin, a typical alloy used for the manufacture...
Abstract
A brass elbow that formed one termination of a steam heating coil failed adjacent to the brazed connection after ten years of service. Chemical analysis showed that the elbow was made from a 60-40 CuZn brass containing 3% lead and 1% tin, a typical alloy used for the manufacture of components by the hot stamping process. Microscopic examination indicated failure from dezincification. The fact that the screwed end was not affected indicated that the trouble was not caused by the condensate, which flowed through the elbow, but originated from the water heated in the vessel. The helical mode of the cracking was probably due to the torsional stresses which would be imposed on the elbow by thermally induced movements of the coil in service.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001684
EISBN: 978-1-62708-225-9
.... The examination centered on corrosion of the brass components. The seat and shaft were alpha brass, with a hardness of 64 and 79 DPH, respectively. A nut held the shaft onto the seat, and was alpha-beta brass with a hardness of 197 DPH. Welded on the end of the shaft was a ring of hard (DPH 294) alpha-beta brass...
Abstract
The steam tug Hercules was an ocean-going and bay tug for 55 years before being retired. It is now being restored by the National Park Service. A broken steam valve was obtained for microstructural examination. The body was gray cast iron, and the stem and seat were brass. The examination centered on corrosion of the brass components. The seat and shaft were alpha brass, with a hardness of 64 and 79 DPH, respectively. A nut held the shaft onto the seat, and was alpha-beta brass with a hardness of 197 DPH. Welded on the end of the shaft was a ring of hard (DPH 294) alpha-beta brass, which seated against the nut. The brass seat and stem show little corrosion. However, the alpha-beta brass nut and welded tip showed extensive dezincification. This process of removal of Zn and the retention of Cu began in the high Zn beta phase, but eventually both phases were attacked. The depth of penetration was consistent with dezincification rates reported in the literature for such brasses in salt water if the valve had been in service about 55 years.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001313
EISBN: 978-1-62708-215-0
... the microstructure, crack morphology, and inside and outside diameter surface conditions. The typical microstructure of the cooler tube is shown in Fig. 2 ; it consisted of equiaxed alpha grains with annealing twins. This microstructure is normal for an admiralty brass in the annealed condition. Fig. 2...
Abstract
An arsenical admiralty brass (UNS C44300) finned tube in a generator air cooler unit at a hydroelectric power station failed. The unit had been in operation for approximately 49,000 h. Stereomicroscopic examination revealed two small transverse cracks that were within a few millimeters of the tube end, with one being a through-wall crack. Metallographic examination of sections containing the cracks showed branching secondary cracks and a transgranular cracking mode. The cracks appeared to initiate in pits. EDS analysis of a friable deposit found on the inside diameter of the tube and XRD analysis of crystalline compounds in the deposit indicated the possible presence of ammonia. Failure was attributed to stress-corrosion cracking resulting from ammonia in the cooling water. It was recommended that an alternate tube material, such as a 70Cu-30Ni alloy or a titanium alloy, be used.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001083
EISBN: 978-1-62708-214-3
... and the morphology of the base plate surface. The typical microstructure of the impellers is shown in Fig. 3 . It consisted of alpha dendrites, showing segregation, randomly dispersed lead particles, and shrinkage voids. This microstructure was characteristic of copper alloy C83600, except for the excessive...
Abstract
Copper alloy (C83600) impellers from two different feed pumps that supplied water to a 2-year-old boiler failed repeatedly. Examination by various methods indicated that the failures were caused by sulfide attack that concentrated in shrinkage voids in the castings. Two alternatives to prevent future failures were recommended: changing the impeller composition to a cast stainless steel, or implementing stricter nondestructive evaluation requirements for copper alloy castings.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001057
EISBN: 978-1-62708-214-3
... was that of cold-worked alpha brass ( Fig. 3 ). Figure 4 shows a portion of the fracture surface in cross section. The fracture path is seen to be transgranular and typical of overload failure, which corroborates the SEM observations. The thin band on the outside surface of the pipe ( Fig. 4 , left side...
Abstract
A brass (CDA alloy 230) pipe nipple that was part of a domestic cold water bath system failed two weeks after installation. Macrofractography, SEM examination, metallography, and chemical analyses were performed on specimens cut through the main fracture surface. The physical and background evidence obtained indicated failure due to cracking initiated by stamped markings on the pipe wall and extended by high circumferential residual stresses. It was recommended that annealed pipe be used.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091703
EISBN: 978-1-62708-229-7
... consisted of equiaxed alpha grains with annealing twins, as is normal for an admiralty brass in the annealed condition. The transverse through-wall crack contained branching secondary cracks. The mode of cracking was transgranular. Branched transgranular crack paths are characteristic of SCC. The cracks...
Abstract
An arsenical admiralty brass (UNS C44300) finned tube in a generator air cooler unit at a hydroelectric power station failed. The unit had been in operation for approximately 49,000 h. The cooling medium for the tubes was water from a river. Air flowed over the finned exterior of the tubes, while water circulated through the tubes. Investigation (visual inspection, leak testing, history review, 100X micrographs etched in potassium dichromate, chemical analysis, and EDS and XRD analysis of internal tube deposits) supported the conclusion that the cause of the tube leaks was ammonia-induced SCC. Because the cracks initiated on the inside surfaces of the tubes and because the river water was not treated before it entered the coolers, the ammonia was likely present in the river water and probably concentrated under the internal deposits. Recommendations included either eliminating the ammonia (prohibitively expensive in cost and time) or using an alternate material (such as a 70Cu-30Ni alloy or a more expensive titanium alloy) that is resistant to ammonia corrosion as well as to chlorides and sulfur species.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001822
EISBN: 978-1-62708-180-1
... and lead with a minor amount of tin. These elements are the major constituents of the bronze friction bearing. The copper-penetration failure occurred in the following sequence: The bearing surface was heated by friction because of loss of lubrication The babbitt metal lining melts between about...
Abstract
This article provides a background of friction-bearing failures due to overheating. The failures of locomotive axles caused by overheated traction-motor support bearings are discussed. The article also describes liquid-metal embrittlement (LME) in steel. It examines the results of various axle studies, with illustrations and concludes with information on the simulation of the LME mechanism.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006777
EISBN: 978-1-62708-295-2
... to eutectoid divorcement in low-carbon steels Grain-boundary hypereutecoid cementite in carburized or hypereutectoid steels Iron nitride grain-boundary films in nitrided steels Temper embrittlement in heat treated steels due to segregation of phosphorus, antimony, arsenic, or tin Embrittlement...
Abstract
This article briefly reviews the factors that influence the occurrence of intergranular (IG) fractures. Because the appearance of IG fractures is often very similar, the principal focus is placed on the various metallurgical or environmental factors that cause grain boundaries to become the preferred path of crack growth. The article describes in more detail some typical mechanisms that cause IG fracture. It discusses the causes and effects of IG brittle cracking, dimpled IG fracture, IG fatigue, hydrogen embrittlement, and IG stress-corrosion cracking. The article presents a case history on IG fracture of steam generator tubes, where a lowering of the operating temperature was proposed to reduce failures.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001803
EISBN: 978-1-62708-241-9
... of titanium alloys especially intended to be used in living bodies began with the introduction of new alloys using biocompatible β stabilizer elements, such as iron, tantalum, zirconium, tin, and niobium. [ 3 ] The manufacturing of implant materials generally requires advanced casting and/or continuous...
Abstract
Metallurgical SEM analysis provides many insights into the failure of biomedical materials and devices. The results of several such investigations are reported here, including findings and conclusions from the examination a total hip prosthesis, stainless steel and titanium compression plates, and hollow spinal rods. Some of the failure mechanisms that were identified include corrosive attack, corrosion plus erosion-corrosion, inclusions and stress gaps, production impurities, design flaws, and manufacturing defects. Failure prevention and mitigation strategies are also discussed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... that combine active potentials with higher hydrogen overvoltages, such as aluminum, zinc, cadmium, and tin, are much less damaging, although not fully compatible with magnesium. Aluminum alloys that contain small percentages of copper (7000 and 2000 series and 380 die-casting alloy) may cause serious...
Abstract
Corrosion is the electrochemical reaction of a material and its environment. This article addresses those forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. Various forms of corrosion covered are galvanic corrosion, uniform corrosion, pitting, crevice corrosion, intergranular corrosion, selective leaching, and velocity-affected corrosion. In particular, mechanisms of corrosive attack for specific forms of corrosion, as well as evaluation and factors contributing to these forms, are described. These reviews of corrosion forms and mechanisms are intended to assist the reader in developing an understanding of the underlying principles of corrosion; acquiring such an understanding is the first step in recognizing and analyzing corrosion-related failures and in formulating preventive measures.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
Abstract
This article aims to identify and illustrate the types of overload failures, which are categorized as failures due to insufficient material strength and underdesign, failures due to stress concentration and material defects, and failures due to material alteration. It describes the general aspects of fracture modes and mechanisms. The article briefly reviews some mechanistic aspects of ductile and brittle crack propagation, including discussion on mixed-mode cracking. Factors associated with overload failures are discussed, and, where appropriate, preventive steps for reducing the likelihood of overload fractures are included. The article focuses primarily on the contribution of embrittlement to overload failure. The embrittling phenomena are described and differentiated by their causes, effects, and remedial methods, so that failure characteristics can be directly compared during practical failure investigation. The article describes the effects of mechanical loading on a part in service and provides information on laboratory fracture examination.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... caustic solutions High-nickel alloys High-purity steam Alpha brass Ammoniacal solutions, chloramine, amine Aluminum alloys Aqueous chloride, bromide, and iodide solutions Titanium alloys Aqueous chloride, bromide, and iodide solutions; organic liquids; N 2 O 4 Magnesium alloys Aqueous...
Abstract
Stress-corrosion cracking (SCC) is a form of corrosion and produces wastage in that the stress-corrosion cracks penetrate the cross-sectional thickness of a component over time and deteriorate its mechanical strength. Although there are factors common among the different forms of environmentally induced cracking, this article deals only with SCC of metallic components. It begins by presenting terminology and background of SCC. Then, the general characteristics of SCC and the development of conditions for SCC as well as the stages of SCC are covered. The article provides a brief overview of proposed SCC propagation mechanisms. It discusses the processes involved in diagnosing SCC and the prevention and mitigation of SCC. Several engineering alloys are discussed with respect to their susceptibility to SCC. This includes a description of some of the environmental and metallurgical conditions commonly associated with the development of SCC, although not all, and numerous case studies.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... steels are susceptible to various molten metals or alloys, such as brass, aluminum, bronze, copper, zinc, lead-tin solders, indium, and lithium, at temperatures from 260 to 815 °C (500 to 1500 °F). Plain carbon steels are not satisfactory for long-term use with molten aluminum. Stainless steels...
Abstract
High temperature corrosion may occur in numerous environments and is affected by factors such as temperature, alloy or protective coating composition, time, and gas composition. This article explains a number of potential degradation processes, namely, oxidation, carburization and metal dusting, sulfidation, hot corrosion, chloridation, hydrogen interactions, molten metals, molten salts, and aging reactions including sensitization, stress-corrosion cracking, and corrosion fatigue. It concludes with a discussion on various protective coatings, such as aluminide coatings, overlay coatings, thermal barrier coatings, and ceramic coatings.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
Abstract
Overload failures refer to the ductile or brittle fracture of a material when stresses exceed the load-bearing capacity of a material. This article reviews some mechanistic aspects of ductile and brittle crack propagation, including a discussion on mixed-mode cracking, which may also occur when an overload failure is caused by a combination of ductile and brittle cracking mechanisms. It describes the general aspects of fracture modes and mechanisms. The article discusses some of the material, mechanical, and environmental factors that may be involved in determining the root cause of an overload failure. It also presents examples of thermally and environmentally induced embrittlement effects that can alter the overload fracture behavior of metals.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
Abstract
This article commences with a discussion on the characteristics of stress-corrosion cracking (SCC) and describes crack initiation and propagation during SCC. It reviews the various mechanisms of SCC and addresses electrochemical and stress-sorption theories. The article explains the SCC, which occurs due to welding, metalworking process, and stress concentration, including options for investigation and corrective measures. It describes the sources of stresses in service and the effect of composition and metal structure on the susceptibility of SCC. The article provides information on specific ions and substances, service environments, and preservice environments responsible for SCC. It details the analysis of SCC failures, which include on-site examination, sampling, observation of fracture surface characteristics, macroscopic examination, microscopic examination, chemical analysis, metallographic analysis, and simulated-service tests. It provides case studies for the analysis of SCC service failures and their occurrence in steels, stainless steels, and commercial alloys of aluminum, copper, magnesium, and titanium.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006824
EISBN: 978-1-62708-329-4
Abstract
This article focuses on common failures of the components associated with the flow path of industrial gas turbines. Examples of steam turbine blade failures are also discussed, because these components share some similarities with gas turbine blading. Some of the analytical methods used in the laboratory portion of the failure investigation are mentioned in the failure examples. The topics covered are creep, localized overheating, thermal-mechanical fatigue, high-cycle fatigue, fretting wear, erosive wear, high-temperature oxidation, hot corrosion, liquid metal embrittlement, and manufacturing and repair deficiencies.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006943
EISBN: 978-1-62708-395-9
Abstract
This article discusses the operating principles, advantages, and limitations of scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, and secondary ion mass spectroscopy that are used to analyze the surface chemistry of plastics.
1