1-20 of 1231 Search Results for

alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047010
EISBN: 978-1-62708-234-1
... Abstract When bulging occurred in mortar tubes made of British I steel during elevated-temperature test firing, a test program was formulated to evaluate the high-temperature properties (at 540 to 650 deg C, or 1000 to 1200 deg F) of the British I steel and of several alternative alloys...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001546
EISBN: 978-1-62708-217-4
... is described as being “saturated with microcracks.” It should be noted that the mechanical properties of all components of the assembly met specifications. Fatigue of an Adhesive Bonded Alloy Sheet Bonded samples of 2024-T3 sheet were fatigue tested at various stress levels. Failures could...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001490
EISBN: 978-1-62708-232-7
... Abstract A steel pot used as crucible in a magnesium alloy foundry developed a leak that resulted in a fire and caused extensive damage. Hypotheses as to the cause of the leak included a defect in the pot, overuse, overheating, and poor foundry practices. Scanning electron microscopy...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001447
EISBN: 978-1-62708-235-8
... Abstract Hydrogen embrittlement is the brittleness affecting copper and copper alloys containing oxygen which develops during heat treatment at temperatures of about 400 deg C (752 deg F) and above in an atmosphere containing hydrogen. The phenomenon of hydrogen embrittlement of copper and its...
Image
Published: 01 January 2002
Fig. 3 Galvanic series of metals and alloys in seawater. Alloys are listed in order of the potential they exhibit in flowing seawater; those indicated by the black rectangle were tested in low-velocity or poorly aerated water and at shielded areas may become active and exhibit a potential near More
Image
Published: 15 January 2021
Fig. 3 Galvanic series of metals and alloys in seawater. Alloys are listed in order of the potential they exhibit in flowing seawater; those indicated by a black rectangle were tested in low-velocity or poorly aerated water and at shielded areas may become active and exhibit a potential near More
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001046
EISBN: 978-1-62708-214-3
... gases to shunt across the preheater/exchanger. Metallographic examination of the plates showed that accelerated internal oxidation had been the cause of failure. Corrosion racks of candidate alloys (types 304, 309, and 316 stainless steels, Inconel 600, Inconel 625, Incoloy 800, Incoloy 825, and Inco...
Image
Published: 01 June 2019
Fig. 5 Nitrogen pickup of roll alloys as a function of time in an N 2 atmosphere at 1000 °C. More
Image
Published: 01 January 2002
Fig. 13 Incubation time of different metals and alloys (frequency = 21.1 kHz; distance between specimen and vibration horn = 0.9 mm; vibration amplitude = 35 μm; temperature = 20 °C; liquid: water). Source: Ref 30 More
Image
Published: 01 January 2002
Fig. 14 Erosion rate of different metals and alloys (frequency = 20 kHz; specimen mounted in vibration horn; vibration amplitude = 50 μm; temperature = 20 °C; liquid: distilled water). Source: Ref 2 More
Image
Published: 01 January 2002
Fig. 17 Erosion rate of TiNi, 304 stainless steel, and Ni-base alloys (frequency = 20 kHz; specimen mounted in vibration horn; vibration amplitude = 50 μm; temperature = 20 °C; liquid: 3.5% NaCl aqueous solution). Source: Ref 34 More
Image
Published: 01 January 2002
Fig. 8 Schematic creep curves for alloys having low and high stress-rupture ductility, showing the increased safety margin provided by the alloy with high stress-rupture ductility. Source: Ref 10 More
Image
Published: 15 January 2021
Fig. 9 Schematic creep curves for alloys having low and high stress-rupture ductility, showing the increased safety margin provided by the alloy with high stress-rupture ductility. Source: Ref 18 More
Image
Published: 30 August 2021
Fig. 37 Grain refining of A356 alloy by three master alloys. Source: Ref 27 More
Image
Published: 30 August 2021
Fig. 46 (a) Formation of shrinkage cavities for alloys that solidify by skin formation. (b) Formation of internal porosity for alloys that solidify over long freezing ranges. Source: Ref 38 . Courtesy of Copper Development Association Inc., McLean, VA More
Image
Published: 01 December 1992
Fig. 6 Reactivity of sever air representative alloys reacted in Co. More
Image
Published: 01 December 2019
Fig. 7 Cu/Cu-alloys used during JCOE forming More
Image
Published: 01 January 2002
Fig. 52 Torsion fracture in an aluminum-silicon alloy (alloy 319-T5). Classic brittle torsion fracture on a plane at 45° to the axis of the cylinder. Hardness, 38 HRB; tensile strength, 179 MPa (26 ksi); total elongation, 0.5%. Source: Ref 42 More
Image
Published: 01 January 2002
Fig. 53 Macroscale brittle torsion fracture in an aluminum-silicon alloy (alloy A356 sand casting). Hardness, 38 HRB; tensile strength, 214 MPa (31 ksi); total elongation, 4%. Source: Ref 42 More
Image
Published: 15 January 2021
Fig. 3 Perforation of alloy 690 incinerator liner near alloy 160 patch, showing that the original 6.35 mm (0.250 in.) wall thickness was reduced to approximately 1.27 mm (0.050 in.) or less in the general area of failure. Courtesy of U.S. Navy More