1-20 of 109

Search Results for alloy phase diagrams

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 June 2019
Fig. 3 Fe-Cr alloy phase diagram 15 More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001490
EISBN: 978-1-62708-232-7
..., transmission electron microscopy, optical microscopy, and x-ray microanalysis in conjunction with dimensional analysis, phase diagrams and thermodynamics considerations were employed to evaluate the various hypotheses. All evidence pointed to an oxide mass in the area where the hole developed, likely...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001609
EISBN: 978-1-62708-229-7
...% Cr ferritic alloy 405 with 0.08% C is not. 1 , 2 Fig. 3 Fe-Cr alloy phase diagram 15 Similar to standard 18Cr-8Ni austenitic stainless steels, Cr and C in these Cr-Fe ferritic alloys react to form Cr carbide precipitates when heated to 315 to 925 °C (600 to 1700 °F). Precipitates...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001638
EISBN: 978-1-62708-228-0
... with atmospheres bearing both sulfur and oxygen at 870 °C. These diagrams show which condensed phases will be in equilibrium at the gas-metal interface as a function of P S2 and P O2 . 3 Figure 9 shows the three diagrams superimposed upon each other. These diagrams are for pure metals, not alloys. Nevertheless...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048808
EISBN: 978-1-62708-228-0
... metal, the high carbon level allowed martensite to form. In the area where the grain-boundary precipitates appeared heaviest, between the martensite band and the duplex structure, the structure was probably austenitic. These phase changes are predicted from the Schaeffler diagram (in the article...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001133
EISBN: 978-1-62708-214-3
... be understood by referring to the carbon-cobalt phase diagram shown in Fig. 6 ( Ref 2 ). This diagram illustrates the significant effect of carbon in reducing both liquidus and solidus temperatures. The lower-carbon-content surface layer effectively increases the solidus temperature from approximately 1425 °C...
Book Chapter

By K.J. Imrich
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001599
EISBN: 978-1-62708-236-5
.... : Binary Alloy Phase Diagrams , vol. 2 , American Society for Metals , Metals Park, OH , 1987 , p. 1611 . 3. Imrich K.J. and Jenkins C.F. : Materials Performance in a Radioactive Waste/Glass Melter System Environment , Corrosion/96, National Association of Corrosion Engineers...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001521
EISBN: 978-1-62708-229-7
... diagram of a turbogenerator oil cooler with Admiralty brass tubes. Description of Tubes The tubes have outside diameters of 16 mm (0.625 in.) and wall thicknesses of 1 mm (0.042 in.). They are made to ASTM B111 Alloy C44300, which is commonly referred to as Admiralty Metal (an α brass) 1...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003551
EISBN: 978-1-62708-180-1
... is the juxtaposition of two constituents of different properties, such as different thermal expansion coefficients (e.g., alumina-mullite, mullite-silica, and magnesia-chromite). In fact, in most refractories, phase boundary microcracking can be expected. Melting Behavior and the Use of Phase Diagrams For many...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003510
EISBN: 978-1-62708-180-1
.... The formation of these products and the proportions of each are dependent on the time and temperature cooling history of the particular alloy and the elemental composition of that alloy. The transformation products formed are typically illustrated with the use of transformation diagrams, which show...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... are exposed to elevated temperatures for long times. Typical metallurgical instabilities for turbine blades include carbide coarsening, gamma-prime formation, and hot corrosion. For steel alloys used for tubes and piping, carbide spheroidization and coalescence, sigma-phase formation, sensitization...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
..., are thermal-metallurgical phenomena related to alloy-specific phase transformations and local stress-strain behavior controlled by thermomechanical conditions. Process modeling and simulation are important tools to evaluate thermomechanical and metallurgical conditions ( Ref 34 ). Early AM modeling research...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001681
EISBN: 978-1-62708-234-1
... these two cast parts had channels molded in them through which cooling water passed, so that only the outside was subjected to high temperatures. Fig. 1 Schematic diagram of the burner nozzle configuration. The top casting was made of a Co-Cr-Fe alloy (typically (wt. %) 29 Cr, 19 Fe, 0.02 C...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001836
EISBN: 978-1-62708-241-9
... point the low melting metal or alloy got into active materials and began to melt and evaporate at the attached point; at the same time that the surface tension was decreased, the attached area spread. Fig. 4 Schematic diagram of the copper entrapment in the steel [ 1 ] The low melting...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003546
EISBN: 978-1-62708-180-1
... of loading: in-phase and out-of-phase cycling. The article illustrates the ways in which damage can interact at high and low temperatures and the development of microstructurally based models in parametric form. It presents a case study of the prediction of residual life in a turbine casing of a ship through...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
... steels. These alloys are widely used for their creep resistance, but they are not immune to reduced rupture life due to overaging. Intermetallic-Phase Precipitation Topologically close-packed phases (commonly known as tcp), such as sigma, mu, and Laves phases, form at elevated temperatures...
Book Chapter

By Richard P. Baron
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... creep failure is used. For example, a creep failure of a cobalt-base alloy turbine vane is shown in Fig. 1 . The bowing is the result of a reduction in creep strength at the higher temperatures from overheating. Fig. 1 Creep damage (bowing) of a cobalt-base alloy turbine vane from overheating...
Book Chapter

By Brett A. Miller, Daniel P. Dennies
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006828
EISBN: 978-1-62708-329-4
... the solidus, or melting, temperature of the base metal. The filler metal is distributed between closely fitted surfaces of the joint by capillary action. Brazing is a frequently implemented fabrication process that is used not only to join a wide variety of ferrous and nonferrous alloys but also to join...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001818
EISBN: 978-1-62708-241-9
... is approximately 7.94 g/cm 3 ; its melting point is in between 1357 and 1385 °C. This alloy consists of the austenitic FCC matrix phase gamma (γ). Chromium carbides, titanium carbides, and titanium nitrides normally appear in the alloys’ microstructure as secondary phase. Incoloy 800 alloy is generally used...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
.... For nickel-base alloys, Grabke et al. ( Ref 14 – 17 ) proposed six mechanisms: Carbon transfer from the gas phase and dissolution of carbon into the metal phase at oxide defect sites Formation of a supersaturated solution of carbon in the nickel-iron matrix Deposition of graphite on the alloy...