Skip Nav Destination
Close Modal
Search Results for
alloy composition
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 475 Search Results for
alloy composition
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Hot Cracking of a Pump Impeller From a Nuclear Plant
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 8 EDS scan of polished specimen for alloy composition. Element Composition, % Iron 84.66 Chromium 12.61 Nickel 0.98 Silicon 0.27 Manganese 1.48 Molybdenum 0.00
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0090959
EISBN: 978-1-62708-222-8
... level than is lower bainite. The observed structure suggests that the austempering heat treatment was performed too close to the nominal martensite start temperature (M s ). Alternate bands of slightly different alloy composition, which resulted from rolling practice and are not unusual for this alloy...
Abstract
Mower blades manufactured from grade 1566 high-manganese carbon steel failed a standard 90 deg test. The blades had been austempered and reportedly fractured in a brittle manner during testing. The austempering treatment was intended to produce a bainitic microstructure, but investigation (visual inspection, 2% nital etched 8.9x/196x images) showed that the typical core microstructure contained alternating bands of martensite and bainite. The conclusion was that the nonuniform microstructure was likely responsible for the atypical brittle behavior of the blades, and the observed structure suggests that the austempering heat treatment was performed too close to the nominal martensite start temperature. Recommendations included raising the austempering salt-bath temperature 56 deg C (100 deg F) to account for localized compositional variation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0091330
EISBN: 978-1-62708-234-1
... was then replaced by alloy 686 plate (N06686) welded with 686 CPT. Conclusions Though the original materials are recognized for their resistance to corrosion and heat, the 686 alloy composition has superior pitting resistance as indicated by higher PREN (pitting resistance equivalent number) values according...
Abstract
At a power plant, C-276 nickel alloy welds (N10276) on a C-276 duct floor completely disappeared in less than half a year. A continuous supply of flue gas came in contact with the closed bypass duct. The unscrubbed combustion products condensed on the cold duct, then the closed damper conducted heat from the chimney and reheated the condensate. Investigation (visual inspection and welded coupon testing) supported the conclusion that the corrosion was caused by “Green Death,” a corrosive medium used to test for pitting resistance (11.9% H2SO4 + 1.3% HCl + 1% FeCl3 + 1% CuCl2) at 103 deg C (217 deg F). Such conditions exist at power plants. Recommendations included repairing the C-276 plates with a 686CPT weld alloy, and if that did not correct the situation, replacing the plates with 686 plate (N06686) welded with 686 CPT.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048620
EISBN: 978-1-62708-225-9
... impurities, such as lead, tin, or cadmium. This composition problem with zinc alloys was recognized many years ago, and particular attention has been directed toward ensuring that high-purity zinc is used. This corrective measure reportedly resulted in virtual elimination of this type of defect...
Abstract
Two nuts were used to secure the water-supply pipes to the threaded connections on hot-water and cold-water taps. The nut used on the cold-water tap fractured about one week after installation. Examination of the fracture surfaces of the coldwater nut did not reveal any obvious defects to account for the fracture, but there were indications of excessive porosity in the nut. The fracture had occurred through the root of the first thread that was adjacent to the flange of the tap. It was found that the nut from the cold-water tap failed by SCC. Apparently, sufficient stress was developed in the nut to promote this type of failure by normal installation because there was no evidence of excessive tightening of the nut. Corrosion testing of the nuts indicated that the fractured nut was highly susceptible to intergranular corrosion because of either a deficiency in magnesium content or excessive impurities, such as lead, tin, or cadmium. This composition problem with zinc alloys was recognized many years ago, and particular attention has been directed toward ensuring that high-purity zinc is used. This corrective measure reportedly resulted in virtual elimination of this type of defect.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001107
EISBN: 978-1-62708-214-3
... Fig. 1 Section of the alloy 800 by pass liner showing severe metal wastage on the inner surface. Fig. 2 Surface characteristics of the wasted areas, similar to erosion/corrosion damage. 13×. Fig. 5 Micrograph of unaffected areas, showing the composite grain structure...
Abstract
A 150 mm (6 in.) diam, 1.6 mm (0.065 in.) thick alloy 800 1iner from an internal bypass line in a hydrogen reformer was removed from a waste heat boiler because of severe metal loss. Visual and metallographic examinations of the liner indicated severe metal wastage on the inner surface, along with sooty residue. Patterns similar to those associated with erosion/corrosion damage were observed. Microstructural examination of wasted areas revealed a bulk matrix composed of massive carbides, indicating that gross carburization and metal dusting had occurred. X-ray diffraction analysis showed that the carbides were primarily chromium based (Cr 23 C 7 and Cr 7 C 3 ). The sooty substance was identified as graphite. Wasted areas were ferromagnetic and the degree of ferromagnetism was directly related to the degree of wastage. Three actions were recommended: (1) inspection of the waste heat boiler to determine the extent of metal damage in other areas by measuring the degree of ferromagnetism, (2) replacement of metal determined to be magnetic, and (3) closer monitoring of temperatures in the region of the reformer furnace outlet.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001775
EISBN: 978-1-62708-241-9
... intense corrosive activity, SCC, and/or hydrogen-induced cracking of Monel 400. Failures of this alloy can be grouped in four categories: The chemical composition of the tube is presented in Table 2 , along with the alloy composition specified for Monel 400 according to ASTM B 366-95b. As shown...
Abstract
A bent Ni-Cu Monel 400 alloy tube, which operated as part of a pipeline in a petrochemical distillery, failed by through-thickness cracking. The pipeline was used to carry a stream of gaseous hydrocarbons containing hydrochloric acid (HCl) into a reaction tower. The tower provided a caustic solution (NaOH) to remove HCl from the stream, before the latter was directed to a burner. Metallographic examination showed that the cracks were intergranular and were frequently branched. Although nominal chemical composition of the component was found within the specified range, energy dispersive x-ray analysis (EDXA) indicated significant segregation of sulfur and chlorine along the grain boundaries. Failure was attributed to hypochlorous-acid (HClO)-induced stress-corrosion cracking (SCC). The HClO was formed by the reaction of HCl with atmospheric O 2 that entered the tube during shutdowns and startups. Residual stresses, originating from in situ bend forming of the tube during assembly of the line, provided a driving force for crack growth, and the segregation of sulfur on grain boundaries made the material more susceptible to cracking.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001029
EISBN: 978-1-62708-214-3
..., class 2, grade C and were not 100% radiographically inspected. The chemical composition requirements for A356 aluminum alloy were met (nominal composition, Al-7.0Si-0.35Mg). The actuator castings were being torque tested to a torque of 365 N . m (3240 lbf . in.) during static quality control testing...
Abstract
Two investment-cast A356 aluminum alloy actuators used for handles on passenger doors of commercial aircraft fractured during torquing at less than the design load. Visual examination showed that cracking had occurred through a machined side hole. Fractography revealed that the cracks originated in hot tear locations in the castings. Microprobe analysis of fracture surfaces in the hot tear region indicated a much higher silicon-to-aluminum ratio compared with the overload fracture area. No microstructural anomalies related to the failure were found during metallographic examination. It was concluded that the strength of the castings had been compromised by the presence of the casting defects. Modification of the gating system for casting was recommended to eliminate the hot tear zone. It was also suggested that the balance of the castings from the same manufacturing lot be radiographically inspected.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001330
EISBN: 978-1-62708-215-0
...Alloy analyses of failed tube sections Table 1 Alloy analyses of failed tube sections Composition, % Element Tube 1 Tube 2 ASTM A192 specification C 0.11 0.12 0.06 to 0.18 Mn 0.49 0.46 0.27 to 0.63 P 0.006 <0.005 0.035 max S 0.026 0.25 0.035...
Abstract
Two superheater tubes from a 6.2 MPa (900 psig) boiler failed in service because of creep rupture. One tube was carbon steel and the other was carbon steel welded to ASTM A213 Grade T22 (2.25Cr-1.0Mo) tubing. The failure in the welded tube occurred in the carbon steel section. Portions of the superheater were retubed five years previously with Grade 722 material. The failures indicated that tubes were exposed to long-term overheating conditions. While the carbon steel tube did not experience temperatures above the lower transformation temperature 727 deg C (1340 deg F), the welded tube did experience a temperature peak in excess of 727 deg C (1340 deg F). The long-term overheating conditions could have been the result of excessive heat flux and /or inadequate steam flow. In addition, the entire superheater bank should have been upgraded to Grade 722 material at the time of retubing.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001344
EISBN: 978-1-62708-215-0
...SEM-EDS analysis of a fracture surface Table 2 SEM-EDS analysis of a fracture surface Element Composition, % Iron 67.5 Chromium 17.0 Sodium 6.0 Nickel 6.0 Silicon 2.0 Calcium 1.0 Aluminum <0.5 Sulfur <0.5 Chemical analysis of the stainless...
Abstract
Several 304H stainless steel superheater tubes fractured in stressed areas within hours of a severe caustic upset in the boiler feedwater system. Tests performed on a longitudinal weld joint, which connected two adjacent tubes in the tertiary superheater bank, confirmed caustic-induced stress-corrosion cracking, promoted by the presence of residual welding stresses. Improved maintenance of check valves and routine inspection of critical monitoring systems (conductivity alarms, sodium analyzers, etc.) were recommended to help avoid future occurrences of severe boiler feedwater contamination. Additional recommendations were to eliminate these short longitudinal weld joints by using a bracket assembly joint between the tubes, use a post-weld heat treatment to relieve residual welding stress or select a more stress-corrosion cracking resistant alloy for this particular application.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0065827
EISBN: 978-1-62708-221-1
... Abstract Failure analysis results were employed to identify a better alloy. Chipper knives used in the field to chip logs failed frequently. The knives were made of alloys with a composition of Fe-0.48C-0.30Mn-0.90Si-8.50Cr-1.35Mo-1.20W-0.30V. The development of tougher alloy steel...
Abstract
Failure analysis results were employed to identify a better alloy. Chipper knives used in the field to chip logs failed frequently. The knives were made of alloys with a composition of Fe-0.48C-0.30Mn-0.90Si-8.50Cr-1.35Mo-1.20W-0.30V. The development of tougher alloy steel with superior properties was initiated. The nominal composition of Fe-0.50C-0.30Mn-0.40Si-5.00Cr-2.00Mo was developed which achieved the goals of edge retention, resistance to softening under frictional heating, wear resistance, ease of heat treatment, dimensional stability in heat treatment, grindability, and low alloy cost. A chip harvester made from this composition was tested in field with older composition knives. It was found that the new knives outperformed the older knives. The key to the development was interpreted to be careful study of a number of failed knives with different problems used in different types of operations.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001727
EISBN: 978-1-62708-225-9
... vehicle failed at Cape Kennedy ( Fig. 2 ). They were made of 17-4 PH in the H900 condition — a martensitic, age-hardening alloy. In the H900 condition (solution treated and aged 1 hr at 900 F), the material had nominal strengths of 180,000 psi yield and 200,000 psi tensile. The alloy's composition: 0.07 C...
Abstract
Several stainless steel bolts used on a Titan Space Launch Vehicle broke at the shank and failure was attributed to stress-corrosion cracking. But results could not be duplicated in the laboratory with salt-solution immersion tests until the real culprit was established: the secondary effect of galvanic coupling, hydrogen embrittlement.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001046
EISBN: 978-1-62708-214-3
... Perpendicular <0.05 <2 <0.05 <2 No spalling Typical chemical compositions of alloys tested Table 1 Typical chemical compositions of alloys tested Alloy Composition, % C Mn Fe Si Cu Ni Cr Al Ti Mo Others 304 0.08 (a) 2.0 (a) Bal 1.0 (a) … 10.0 19.0...
Abstract
The thin plates within a type 309 stainless steel chlorinated solvent combustion preheater/heat exchanger designed to process fumes from a solvent coating process showed severe corrosion within 6 months of service. Within a year corrosion had produced holes in the plates, allowing gases to shunt across the preheater/exchanger. Metallographic examination of the plates showed that accelerated internal oxidation had been the cause of failure. Corrosion racks of candidate alloys (types 304, 309, and 316 stainless steels, Inconel 600, Inconel 625, Incoloy 800, Incoloy 825, and Inco alloy C-276) were placed directly in the hot gas stream, containing HCl and Cl2, for in situ testing. Results of this investigation showed that nickel-chromium corrosion-resistant alloys, such as Inconel 600, Inconel 625, and Inco alloy C-276, performed well in this environment. Laboratory testing of the same alloys, along with Inconel alloys 601, 617, and 690 and stainless steel type 347 was also conducted in a simulated waste incinerator nitrogen atmosphere containing 10% Co2, 9% O2, 4% HCl, 130 ppm HBr and 100 ppm SO2 at 595, 705, 815, and 925 deg C (1100, 1300,1500, and 1700 deg F). The tests confirmed the suitability of the nickel-chromium alloys for such an environment. Inconel 625 was selected for fabrication of a new preheater/exchanger.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001085
EISBN: 978-1-62708-214-3
.... Fig. 5 (a) SEM micrograph of deposit found in Fig. 12 . (b) EDS scan of are at or constituents. Fig. 6 Composite SEM fractograph of second crack. Fig. 7 Higher-magnification SEM micrograph showing interdendritic features. Fig. 8 EDS scan of polished specimen for alloy...
Abstract
Liquid penetrant inspection of an ASTM A296 grade CA-15 residual heat removal pump impeller from a nuclear plant revealed a crack like indication that approximated the outer contour of the wear ring. Examination of a section containing the crack and three sections from near the main crack indication revealed that the failure was caused by hot cracking related to original weld repairs performed on the impeller casting.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... Abstract High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely...
Abstract
High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube failures, molten salts for energy storage, and degradation and failures in gas turbines. The article describes the effects of environment on aero gas turbine engines and provides an overview of aging, diffusion, and interdiffusion phenomena. It also discusses the processes involved in high-temperature coatings that improve performance of superalloy.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001020
EISBN: 978-1-62708-214-3
...Results of chemical analysis Table 1 Results of chemical analysis Element Composition, % Strut alloy 7014 alloy (a) Aluminum bal bal Silicon 0.15 0.50 (max) Iron 0.28 0.50 (max) Copper 0.47 0.30–0.7 Manganese 0.47 0.30–0.7 Magnesium 2.90 2.2–3.2...
Abstract
The right landing gear on a twin-turboprop transport aircraft collapsed during landing. Preliminary examination indicated that the failure occurred at a steel-to-aluminum (7014) pinned drag-strut connection due to fracture of the lower set of drag-strut attachment lugs at the lower end of the oleo cylinder housing. Two lug fractures that were determined to be the primary fractures were analyzed. Results of various examinations indicated that stress-corrosion cracking associated with the origins of the principal fractures in the connection was the cause of failure. It was recommended that the design be modified to avoid dissimilar metal combinations of high corrosion potential.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001827
EISBN: 978-1-62708-241-9
... are more stable than the sulfides. The oxidation of the sulfides releases elemental sulfur, which then diffuses deeper into the metal, producing more sulfides, and the process repeats itself [ 1 ]. Various parameters may affect the development of these two forms, including alloy composition...
Abstract
Gas turbines and other types of combustion turbomachinery are susceptible to hot corrosion at elevated temperatures. Two such cases resulting in the failure of a gas turbine component were investigated to learn more about the hot corrosion process and the underlying failure mechanisms. Each component was analyzed using optical and scanning electron microscopy, energy dispersive spectroscopy, mechanical testing, and nondestructive techniques. The results of the investigation provide insights on the influence of temperature, composition, and microstructure and the contributing effects of high-temperature oxidation on the hot corrosion process. Preventative measures are also discussed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001638
EISBN: 978-1-62708-228-0
... of sulfidation is influenced by such variables as the alloy composition, exposure time, partial pressures of H 2 and H 2 S, and temperature. Concentrations of H 2 S as low as 1 ppm have been known to cause sulfidation. 1 The effluent stream from the furnace is not expected to contain CO or CO 2 . Instead...
Abstract
An Incoloy 800H (UNS N08810) transfer line on the outlet of an ethane-cracking furnace failed during decoking of the furnace tubes after nine years in service. A metallographic examination using optical and scanning electron microscopy as well as energy-dispersive x-ray spectroscopy revealed that the failure was due to sulfidation. The source of the sulfur in the furnace effluent was either dimethyl disulfide, injected into the furnace feed to prevent coke formation and carburization of the furnace tubes, or contamination of the feed with sulfur bearing oil.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003529
EISBN: 978-1-62708-180-1
... handling wavelength-dispersive spectrometry CHEMICAL ANALYSIS is often a useful tool for failure analysis. There are two main categories of chemical analysis that are often used by failure analysts: Bulk composition evaluation: often performed in order to determine whether the correct alloy...
Abstract
This article describes some of the common elemental composition analysis methods and explains the concept of referee and economy test methods in failure analysis. It discusses different types of microchemical analyses, including backscattered electron imaging, energy-dispersive spectrometry, and wavelength-dispersive spectrometry. The article concludes with information on specimen handling.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0090971
EISBN: 978-1-62708-222-8
... Abstract A die-cast zinc adapter used in a snowthrower failed catastrophically in a brittle overload manner. The component had a chemical composition similar to standard zinc alloy ZA-27 (UNS Z35840), although the iron content was much higher and the copper slightly lower. The mechanical...
Abstract
A die-cast zinc adapter used in a snowthrower failed catastrophically in a brittle overload manner. The component had a chemical composition similar to standard zinc alloy ZA-27 (UNS Z35840), although the iron content was much higher and the copper slightly lower. The mechanical properties and alloy designation were not specified. Investigation (visual inspection, 187x SEM images, unetched 30x images, hardness testing, and chemical analysis) of both the failed adapter and an exemplar casting from known-good lot supported the conclusion that the casting failed as a result of brittle overload fracture due to excessive iron-zinc phase and gross porosity. These conditions acted synergistically to reduce the strength of the material. The composition was nonstandard, and the inherent brittleness suggested that it was unlikely that this material was an intentional proprietary alloy. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001595
EISBN: 978-1-62708-235-8
... of alloying elements. A comparison measure, identified as the critical diameter(D I ), was implemented to estimate the hardening response of a steel from the chemical composition. The critical diameter calculated for a given steel composition can thereafter be used to create an approximate through-thickness...
Abstract
Hardenability evaluation is typically applied to heat treatment process control, but can also augment standard metallurgical failure analysis techniques for steel components. A comprehensive understanding of steel hardenability is an essential complement to the skills of the metallurgical failure analyst. The empirical information supplied by hardenability analysis can provide additional processing and service insight to the investigator. The intent of this paper is to describe some applications of steel thermal response concepts in failure analysis, and several case studies are included to illustrate these applications.
1