Skip Nav Destination
Close Modal
Search Results for
aircrafts
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 282 Search Results for
aircrafts
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001729
EISBN: 978-1-62708-217-4
... the factors involved. They soon ascertained that the lefthand lavatory compartment, at the rear of the aircraft, was very badly damaged, and subsequent work was largely confined to it and its surroundings. Assisting with the metal fracture aspects, we were asked to determine if, in fact, an explosion had...
Abstract
Applying general techniques of failure analysis, the authors deduced that an in-flight explosion brought down a passenger plane. Other evidence pinpointed the location of the explosive, an important factor in establishing responsibility.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001746
EISBN: 978-1-62708-217-4
... tensile stresses. A second factor was a cluster of non-metallic inclusions which had ‘tributary’ cracks starting from them. Also, eyebolts broke when used to lift a light aircraft (about 7000 lb.). The bolt failure was a brittle intergranular fracture, very likely due to a hydrogen-induced delayed failure...
Abstract
Brittle intergranular fracture, typical of a hydrogen-induced delayed failure, caused the failure of an AISI 4340 Cr-Mo-Ni landing gear beam. Corrosion resulting from protective coating damage released nascent hydrogen, which diffused into the steel under the influence of sustained tensile stresses. A second factor was a cluster of non-metallic inclusions which had ‘tributary’ cracks starting from them. Also, eyebolts broke when used to lift a light aircraft (about 7000 lb.). The bolt failure was a brittle intergranular fracture, very likely due to a hydrogen-induced delayed failure mechanism. As for the factors involved, cadmium plating, acid pickling, and steelmaking processes introduce hydrogen on part surfaces. As a second contributing factor, both bolts were 10 Rc points higher in hardness than specified (25 Rc), lessening ductility and notch toughness. A third factor was inadequate procedure, which resulted in bending moments being applied to the bolt threads.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001903
EISBN: 978-1-62708-217-4
... features typical of low stress intensity fatigue of aluminum alloys. The fatigue resulted from abnormal fretting owing to inadequate torquing of the main retention bolts. Aircraft maintenance engineers and owners were advised to adhere to specifications when torquing this joint. Aircraft components...
Abstract
Fretting and/or fretting corrosion fatigue have been observed on such parts as main rotor counterweight tie rods, fixed-pitch propeller blades, propeller blade clamps, pressure regulator lines, and landing gear support brackets. Microcracks started from severe corrosion pits in a failed control rotor spar tube assembly made of cadmium-plated AISI 4130 Cr-Mo alloy steel. Inadequate design was responsible for the failure. A lower tine of the main rotor blade cuff failed in fatigue. The rotor blade cuff was forged of 2014-T6 aluminum alloy. Initial stages of crack growth displayed features typical of low stress intensity fatigue of aluminum alloys. The fatigue resulted from abnormal fretting owing to inadequate torquing of the main retention bolts. Aircraft maintenance engineers and owners were advised to adhere to specifications when torquing this joint.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091644
EISBN: 978-1-62708-217-4
... Abstract During a routine inspection on an aircraft assembly line, an airframe attachment bolt was found to be broken. The bolt was one of 12 that attach the lower outboard longeron to the wing carry-through structure. Failure occurred on the right-hand forward bolt in this longeron splice...
Abstract
During a routine inspection on an aircraft assembly line, an airframe attachment bolt was found to be broken. The bolt was one of 12 that attach the lower outboard longeron to the wing carry-through structure. Failure occurred on the right-hand forward bolt in this longeron splice attachment. The bolt was fabricated from PH13-8Mo stainless steel heat treated to have an ultimate tensile strength of 1517 to 1655 MPa (220 to 240 ksi). A water-soluble coolant was used in drilling the bolt hole where this fastener was inserted. Investigation (visual inspection, 265 SEM images, hardness testing, auger emission spectroscopy and secondary imaging spectroscopy, tensile testing, and chemical analysis) supported the conclusion that failure of the attachment bolt was caused by stress corrosion. The source of the corrosive media was the water-soluble coolant used in boring the bolt holes. Recommendations included inspecting for corrosion all the bolts that were installed using the water-soluble coolant at the spliced joint areas, rinsing all machined bolt holes with a noncorrosive agent, and installing new PH13-8Mo stainless steel bolts with a polysulfide wet sealant.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006394
EISBN: 978-1-62708-217-4
.... This action could result in intergranular corrosion and/or SCC if the part was placed under load in an oxidizing medium. Fig. 1 SEM of fracture surface (a) from a failed 17-7PH stainless steel aircraft controller diaphragm showing intergranular fracture indicative of SCC. 170x. (b) SEM fractograph...
Abstract
A preflight inspection found a broken diaphragm from a side controller fabricated from 17-7 PH stainless steel in the RH 950 heat treatment condition. Failure occurred by cracking of the base of the flange-like diaphragm. The crack traveled 360 deg around the diaphragm. Scanning electron microscopy (SEM) revealed that the failure occurred by a brittle intergranular mechanism and stress-corrosion cracking (SCC), and indicated a failure mode of selective grain-boundary separation. The diaphragms were heat treated in batches of 25. An improper heat treatment could have resulted in the formation of grain boundary precipitates, including chromium carbides. It was concluded that failure of the diaphragm was due to a combination of sensitization caused by improper heat treatment and subsequent SCC. It was recommended that the remaining 24 sensor diaphragms from the affected batch be removed from service. In addition, a sample from each heat treat batch should be submitted to the Strauss test (ASTM A262, practice E) to determine susceptibility to intergranular corrosion. Also, it was recommended that a stress analysis be performed on the system to determine whether a different heat treatment (which would offer lower strength but higher toughness) could be used for this part.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006406
EISBN: 978-1-62708-217-4
... Abstract A crack was found in an aircraft main wing spar flange fabricated from 7079-T6 aluminum alloy during a routine nondestructive x-ray inspection after the craft had logged 300 h. Scanning electron microscopy (SEM) revealed an intergranular fracture pattern indicative of stress-corrosion...
Abstract
A crack was found in an aircraft main wing spar flange fabricated from 7079-T6 aluminum alloy during a routine nondestructive x-ray inspection after the craft had logged 300 h. Scanning electron microscopy (SEM) revealed an intergranular fracture pattern indicative of stress-corrosion cracking (SCC) and fatigue striations near the crack origin. Visual examination of the crack edge revealed that the installation of the fasteners produced a fit up stress. Further inspection of the opened fracture showed that the crack had been present for some time because a heavy buildup of corrosion products was seen on the fractured surface. Metallographic examination of the flange in the area of fracture initiation showed the presence of end grain exposure, which would promote SCC. Electron optical examination of the fracture clearly showed the flange was cracking by a mixed mode of stress corrosion and fatigue. The cracking was accelerated because of an inadvertent fit up stress during installation. The age of the crack could not be established. However, a reevaluation of prior x-ray inspections in this area would result in some close estimate of the age of the crack. End grain exposure further promoted SCC.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006413
EISBN: 978-1-62708-217-4
... that the crack surfaces were covered with a mud crack pattern suggestive of stress-corrosion cracking (SCC). The T6 temper is susceptible to SCC. It was concluded that cracking of the strut could have been aggravated by the hard landing experienced by the aircraft. The strut, however, contained stress-corrosion...
Abstract
Examination of a 7075-T6 aluminum alloy pylon strut revealed cracks in two locations on the ears of the strut. Because the part was still intact, the cracks had to be forced open so that the fractures could be examined. Scanning electron microscopy (SEM) of the opened cracks showed that the crack surfaces were covered with a mud crack pattern suggestive of stress-corrosion cracking (SCC). The T6 temper is susceptible to SCC. It was concluded that cracking of the strut could have been aggravated by the hard landing experienced by the aircraft. The strut, however, contained stress-corrosion cracks which were present before the landing. It was recommended that an inspection for SCC be made of all pylon struts with a similar service life.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001019
EISBN: 978-1-62708-217-4
... Abstract A broken aircraft crankshaft and a severely damaged main brass bearing were examined to determine whether engine failure was initiated in the bearing or in the crankshaft. The steel crankshaft failure was a classical fatigue fracture. The bearing had been subjected to extremely high...
Abstract
A broken aircraft crankshaft and a severely damaged main brass bearing were examined to determine whether engine failure was initiated in the bearing or in the crankshaft. The steel crankshaft failure was a classical fatigue fracture. The bearing had been subjected to extremely high temperatures, as indicated by melting in the brass components and the extreme distortion in the rollers. Microscopic examination on the crankshaft material showed it to be a good quality steel. On the other hand, the chromium plate was thick, porous, and cracked in many places, including the point of the main fatigue crack. It was concluded that the over-all failure was initiated in the crankshaft, and the failure of the bearing resulted from that failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001553
EISBN: 978-1-62708-217-4
... deficiency. The usual way to eliminate decarburization is to machine off the soft skin or employ better quality control when making them. Many aircraft manufacturers employ forged parts with machined surfaces or with shot-peened as-forged surfaces without excessive decarburization. Connecting rods...
Abstract
A connecting rod from a failed engine ruptured in fatigue without evidence of excessive stresses, detonation, overheating, or oil starvation. The origin of the fatigue failure was completely mutilated but decarburization was observed. Significant amounts of decarburization (0.010 to 0.015 in.) were found also in other forgings, such as exhaust rocker arms, main rotor drag brace clevises, bolts of carriage diagonal struts, and spring legs of main landing gears. The failure mode was low-stress, high-cycle fatigue involving tension and bending loads. The main cause was a manufacturing deficiency. The usual way to eliminate decarburization is to machine off the soft skin or employ better quality control when making them. Many aircraft manufacturers employ forged parts with machined surfaces or with shot-peened as-forged surfaces without excessive decarburization.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001743
EISBN: 978-1-62708-217-4
Abstract
Cylinder fatigue can result from abnormal heating in service. Fatigue can be experienced also by piston heads, exhaust valves, and turbosupercharger housings (castings). Pistons from different engines series can sometimes fit, but because of slight design modifications, they may not function properly. Circumferential cracks and fractures near the head-to- barrel junctions have occurred on numerous cylinders of reciprocating piston engines. In most instances, cracks were caused by high cyclic pressures and high temperatures resulting most probably from detonation. At times, fractures or cracks (or both) were also caused by a combination of unfavorable temperature distribution (and possibly excessive pressures around the cylinder barrel), un-nitrided internal surfaces of cylinder barrels, and inadequate thread contours, which caused high stress concentrations at the thread roots. One example of the most common type of cylinder failure is illustrated.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001745
EISBN: 978-1-62708-217-4
... operation may have loosened the fitting. Aircraft components Fittings Fluid penetrant testing 2XXX-T6 Fretting wear Intergranular corrosion Stress-corrosion cracking The part illustrated by Fig. 1 failed in a coastal environment, probably because corrosive chlorides got between...
Abstract
A 2000-T6 aluminum alloy bracket failed in a coastal environment because corrosive chlorides got between the bracket and attachment bolt. The material used for the part was susceptible to stress corrosion under the service conditions. Cracking may have been aggravated by galvanic action between aluminum alloy bracket and steel bolt. To preclude or minimize recurrences, fittings in service should be inspected periodically by dye penetrant for signs of cracking on the end face and within the fitting hole and protected with a suitable coating to exclude damaging chlorides. Also, a 2000-T6 aluminum alloy swivel fitting experienced intergranular corrosion fracture as the result of stress-accelerated corrosion. Corrosion began because of a loose fit between the aluminum swivel fitting and steel tube assembly, which caused fretting. Inadequate maintenance and/or abnormal service operation may have loosened the fitting.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001020
EISBN: 978-1-62708-214-3
... Abstract The right landing gear on a twin-turboprop transport aircraft collapsed during landing. Preliminary examination indicated that the failure occurred at a steel-to-aluminum (7014) pinned drag-strut connection due to fracture of the lower set of drag-strut attachment lugs at the lower end...
Abstract
The right landing gear on a twin-turboprop transport aircraft collapsed during landing. Preliminary examination indicated that the failure occurred at a steel-to-aluminum (7014) pinned drag-strut connection due to fracture of the lower set of drag-strut attachment lugs at the lower end of the oleo cylinder housing. Two lug fractures that were determined to be the primary fractures were analyzed. Results of various examinations indicated that stress-corrosion cracking associated with the origins of the principal fractures in the connection was the cause of failure. It was recommended that the design be modified to avoid dissimilar metal combinations of high corrosion potential.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001904
EISBN: 978-1-62708-217-4
... of corrosion (pits), and continuous abnormal misalignment as well. Corrosion probably developed from moisture and water droplets on shaft diaphragm profiles. Improved diaphragm pack seals and coatings made by an electron-coat process (such as a Sermetal finish) are now used in new shafts. Aircraft...
Abstract
A steel eyebolt which attached a rear lift strut to the right wing of a helicopter failed by fatigue. As a contributing factor, thread cutting produced sharp notches at thread roots, reducing fatigue life. Also, design fatigue life may have been exceeded as the part was in use about 10,000 h. Cumulative damage resulting from a previous accident could have occurred too. Because of this accident, inspectors were instructed to examine threaded zones of eyebolts by magnetic particle inspection after every 100 h in service. A maraging steel drive shaft of a helicopter also failed because of corrosion (pits), and continuous abnormal misalignment as well. Corrosion probably developed from moisture and water droplets on shaft diaphragm profiles. Improved diaphragm pack seals and coatings made by an electron-coat process (such as a Sermetal finish) are now used in new shafts.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0092142
EISBN: 978-1-62708-217-4
... Abstract During a routine inspection on an aircraft assembly line, an airframe attachment bolt was found to be broken. The bolt was one of 12 that attach the lower outboard longeron to the wing carry-through structure. Failure occurred on the right-hand forward bolt in this longeron splice...
Abstract
During a routine inspection on an aircraft assembly line, an airframe attachment bolt was found to be broken. The bolt was one of 12 that attach the lower outboard longeron to the wing carry-through structure. Failure occurred on the right-hand forward bolt in this longeron splice attachment. The bolt was fabricated from PH13-8Mo stainless steel heat treated to have an ultimate tensile strength of 1517 to 1655 MPa (220 to 240 ksi). A water-soluble coolant was used in drilling the bolt hole where this fastener was inserted. Investigation (visual inspection, 265 SEM images, hardness testing, auger emission spectroscopy and secondary imaging spectroscopy, tensile testing, and chemical analysis) supported the conclusion that failure of the attachment bolt was caused by stress corrosion. The source of the corrosive media was the water-soluble coolant used in boring the bolt holes. Recommendations included inspecting for corrosion all the bolts that were installed using the water-soluble coolant at the spliced joint areas, rinsing all machined bolt holes with a noncorrosive agent, and installing new PH13-8Mo stainless steel bolts with a polysulfide wet sealant.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006428
EISBN: 978-1-62708-217-4
.... 1e ). The indentation on wheel 31 could have contributed to the cracking found in the tube well; however, the blemishes at the fillet of wheels 67, 217, and 250 were merely superficial and were not thought to be deleterious. Fig. 1 Aluminum alloy 2014-T6 aircraft nose wheel (a) that failed...
Abstract
Four nose wheels fabricated from 2014-T6 aluminum alloy and cold worked at the flange were examined. Visual examination showed that the failure started in the tube well area on the wheel with serial number 31. The failure initiated in the flange fillet on wheels with serial numbers 67, 217, and 250. Scanning electron microscopy (SEM) examination of the fractures showed that failure initiated by SCC or a corrosion pit on all failures examined. The failures then progressed by fatigue. Dye penetrant testing revealed no additional flaws on the wheels that had failed in the flange area. There was, however, one flaw area in the flange of the wheel that failed in the tube well. This flaw resembled a corrosion pit. It was concluded that failure of nose wheels 67, 217, and 250 was caused by cracking due to SCC or pitting. The failures progressed by fatigue. Because failure occurred in the same general area on all three wheels, these locations are suspect as being underdesigned. It was recommended that the nose wheel be redesigned and additional service data be accumulated to understand the contributing factors that resulted in wheel failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001744
EISBN: 978-1-62708-217-4
.... Aircraft components Airplane engines Axles Fittings Repair welding Welding defects Chromium-nickel steel Brittle fracture Joining-related failures Two examples of brittle fracture promoted by small fatigue cracks due to welding deficiencies illustrate weld failures. Other parts involving...
Abstract
Two examples involved brittle fracture promoted by small fatigue cracks owing to welding deficiencies. Other parts involving inadequate welding were a ski-wheel axle flange, ski fitting (brackets), and undercarriage shock strut stub assembly. In an attach fitting for an engine mount, weld cracks (severe stress concentrations) formed during repair welding. Cracks were severely oxidized. The main cause was incorrect repair and inadequate inspection of the fitting. In a cast CrNi alloy ski wheel axle, brittle fatigue failure emanated from welding cracks (notches). These welding cracks formed during the fabrication of the axle mounting plate. So-called all-purpose electrodes were used. Thus, the main cause for failure was a manufacturing deficiency-fatigue failure developed because of improper welding during fabrication of the axle. The proper electrode should have been used.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001290
EISBN: 978-1-62708-215-0
... Abstract Damage to a passenger aircraft that resulted from a midair explosion and subsequent emergency landing was investigated to determine the cause and location of the explosion. Extensive damage had occurred in the front toilet and cockpit areas and to the undercarriage and underside...
Abstract
Damage to a passenger aircraft that resulted from a midair explosion and subsequent emergency landing was investigated to determine the cause and location of the explosion. Extensive damage had occurred in the front toilet and cockpit areas and to the undercarriage and underside of the aircraft. Fractographic and surface examination of metal fragments (stainless steel and aluminum alloy) from damaged areas indicated that the accident was caused by an explosion in the front toilet. A reconstruction exercise confirmed this conclusion. Damage to the undercarriage and underside resulted from the emergency landing.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001295
EISBN: 978-1-62708-215-0
... Abstract Over a period of 2 or 3 years, 40 to 50 premature failures of drawn high-tensile, pearlitic high-carbon (0.8 wt% C) steel wires used as cables for towing targets behind aircraft occurred. Six service failures were examined in detail. Four types of failure characteristics were noted...
Abstract
Over a period of 2 or 3 years, 40 to 50 premature failures of drawn high-tensile, pearlitic high-carbon (0.8 wt% C) steel wires used as cables for towing targets behind aircraft occurred. Six service failures were examined in detail. Four types of failure characteristics were noted. A close examination of wire that had been flown several times without failure was also made, and dynamic tests were conducted to investigate the fracture characteristics of wire subjected to dynamic loading. It was concluded that dynamic shock loading transmitted by the target during unsteady flight conditions was the major cause of failure. Recommendations emphasized the need for a suitable shock absorber to be fitted at the constant-tensioning device of the winch system.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001507
EISBN: 978-1-62708-217-4
... Abstract A large four-engine aircraft was on a cargo flight at night when a loud bang was heard, accompanied by a loss of power from both engines on the left side. After an emergency landing, it was discovered that the propellers from both left side engines were missing. The initial...
Abstract
A large four-engine aircraft was on a cargo flight at night when a loud bang was heard, accompanied by a loss of power from both engines on the left side. After an emergency landing, it was discovered that the propellers from both left side engines were missing. The initial investigation determined that the four-bladed propeller from the left inboard engine had separated in flight, subsequently impacting the left outboard engine, causing its propeller to separate also. Three years later, the left inboard propeller hub was recovered. All four blades had separated through the shank area adjacent to the hub. Detailed SEM examination confirmed a fatigue mode of failure in this area with a primary single origin on the inside surface of the shank. The main fatigue origin site was coincident with one of the defects on the inner surface of the blade shank. The most probable source for creating the defects on the ID bore of the shank was the blade tip chrome plating process, which was carried out during the last overhaul prior to the failure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091674
EISBN: 978-1-62708-217-4
... Abstract Forged aluminum alloy 2014-T6 hinge brackets in naval aircraft rudder and aileron linkages were found cracked in service. The cracks were in the hinge lugs, adjacent to a bushing made of cadmium-plated 4130 steel. Investigation (visual inspection and 250X micrographs) supported...
Abstract
Forged aluminum alloy 2014-T6 hinge brackets in naval aircraft rudder and aileron linkages were found cracked in service. The cracks were in the hinge lugs, adjacent to a bushing made of cadmium-plated 4130 steel. Investigation (visual inspection and 250X micrographs) supported the conclusion that the failure of the hinge brackets occurred by SCC. The corrosion was caused by exposure to a marine environment in the absence of paint in stressed areas due to chipping. The stress resulted from the interference fit of the bushing in the lug hole. Recommendations included inspecting all hinge brackets in service for cracks and for proper maintenance of paint. Also suggested was replacing the aluminum alloy 2015-T6 with alloy 7075-T6, and surface treatment for the 7075-T6 brackets was recommended using sulfuric acid anodizing and dichromate sealing. Finally, it was also recommended that the interference fit of the bushing in the lug hole be discontinued.
1