Skip Nav Destination
Close Modal
Search Results for
age hardening
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 122 Search Results for
age hardening
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046966
EISBN: 978-1-62708-229-7
... to age hardening, subsurface oxidation related to intragranular carbides, and high residual tensile macrostresses. No further conclusions could be drawn because of the lack of detailed service history, and no recommendations were made. Airfoils Carbides Precipitation Turbines Vanes AMS 5382...
Abstract
A turbine vane made of cast cobalt-base alloy AMS 5382 (Stellite 31; composition: Co-25.5Cr-10.5Ni-7.5W) was returned from service after an undetermined number of service hours because of crack indications on the airfoil sections. This alloy is cast by the precision investment method. Analysis (visual inspection, 100x/500x metallographic examination of sections etched with a mixture of ferric chloride, hydrochloric acid, and methanol, and bend tests) supported the conclusions that cracking of the airfoil sections was caused by thermal fatigue and was contributed to by low ductility due to age hardening, subsurface oxidation related to intragranular carbides, and high residual tensile macrostresses. No further conclusions could be drawn because of the lack of detailed service history, and no recommendations were made.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001346
EISBN: 978-1-62708-215-0
... intergranularly from both the flue gas and steam sides. Enhanced general and grain boundary oxidation coupled with age hardening of the alloy led to the formation of incipient intergranular cracks that acted as sites for the initiation of the fatigue cracks. References References 1. Orr J...
Abstract
Alloy UNS N08800 (Alloy 800) tubes of the steam superheating coils of two hydrocracker charge heaters in a refinery failed prematurely in service. Failure analysis of the tubes indicated that the failures could be attributed to thermal fatigue as a result of temperature fluctuations as well as restriction to movement. Fatigue cracks initiated intergranularly from both the flue gas and steam sides. Enhanced general and grain boundary oxidation coupled with age hardening of the alloy led to the formation of incipient intergranular cracks that acted as sites for the initiation of the fatigue cracks.
Image
Published: 01 June 2019
Fig. 1 Airfoil segment from a cast Stellite 31 turbine vane that failed by thermal fatigue. (a) and (b) Thermal fatigue cracks emanating from a leading edge and progressing along grain boundaries. The microstructure shows evidence of age hardening by intragranular precipitation of carbide
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001590
EISBN: 978-1-62708-228-0
.... Available Materials and Post Fabrication Heat Treatments Alloys containing the age hardening elements (Al, Ti, Nb plus C) are susceptible to stress relation cracking when placed in service with the age hardening temperature range. The propensity to develop stress relaxation cracking increases...
Abstract
This case study demonstrates that Alloy 601 (UNS N06601) is susceptible to strain-age cracking. The observation illustrates the potential importance of post weld heat treatment to the successful utilization of this alloy in certain applications.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001547
EISBN: 978-1-62708-225-9
... source of weakness. In one set of springs, failures frequently occurred at the base of the end hooks after a few hundred thousand load cycles. The springs, made from 0.02 in. (0.5 mm) diameter 17-7PH stainless steel wire, were age hardened at 900 F (482 C) for 1 h (CH900 condition) after coiling...
Abstract
Life testing of cyclic loaded, miniature extension springs made of 17-7 PH stainless steel wire and AISI 302 Condition B stainless steel wire has shown end hook configuration to be a major source of weakness. To avoid cracking and subsequent fatigue failure, it was found that stress concentration depended on end hook bend sharpness. Also, interference fits are to be avoided in the end hooks of small springs. Additionally, a need for careful consideration of the stress-corrosion properties of candidate materials for spring applications has been demonstrated by stress-corrosion test results for 17-7 PH CH900 and for Custom 455 CH850 stainless steels. Laboratory testing of these two materials in the form of compression springs confirmed the superiority of the 17-7 PH over Custom 455.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001444
EISBN: 978-1-62708-231-0
... evidence of age-hardening having developed during the previous service to which the rail had been subjected. Flame-cutting of high and medium carbon steels is always liable to result in the formation of martensitic zones flanking the cut, especially in massive sections, unless the material is pre...
Abstract
To permit bolting of a 90 lb/yd. flat-bottomed rail to a steel structure, rectangular slots 2 in. wide x 1 in. deep were flame-cut in the base of the rail at 2 ft intervals to suit existing bolt holes. During subsequent handling, one of the rails (which were about 25 ft long) was dropped from a height of approximately 6 ft on to a concrete floor and it fractured into 11 pieces, each break occurring at a slot. The sample piece submitted for examination showed a wholly brittle fracture at each end, the fractures having originated at the sharp corners of the slots. During flame-cutting, a narrow band of material on each side of the cut was raised above the hardening temperature. When the torch had passed the rate of abstraction of heat from this zone by conduction into the cold mass of the rail was sufficiently rapid to amount to a quench and thus cause local hardening. The steel in the regions of the slots possessed little capacity for deformation, and fracturing of the martensitic layer, under cooling or impact stresses, would be likely to occur. The slots should have been cut mechanically.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001727
EISBN: 978-1-62708-225-9
... vehicle failed at Cape Kennedy ( Fig. 2 ). They were made of 17-4 PH in the H900 condition — a martensitic, age-hardening alloy. In the H900 condition (solution treated and aged 1 hr at 900 F), the material had nominal strengths of 180,000 psi yield and 200,000 psi tensile. The alloy's composition: 0.07 C...
Abstract
Several stainless steel bolts used on a Titan Space Launch Vehicle broke at the shank and failure was attributed to stress-corrosion cracking. But results could not be duplicated in the laboratory with salt-solution immersion tests until the real culprit was established: the secondary effect of galvanic coupling, hydrogen embrittlement.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001020
EISBN: 978-1-62708-214-3
... calculations for the affected components showed adequate safety margins well within regulation limits. This was confirmed by a nearly 30-year period of satisfactory service and component performance. The oleo cylinder forging was identified as an age-hardenable aluminum alloy (type 7014) of British origin...
Abstract
The right landing gear on a twin-turboprop transport aircraft collapsed during landing. Preliminary examination indicated that the failure occurred at a steel-to-aluminum (7014) pinned drag-strut connection due to fracture of the lower set of drag-strut attachment lugs at the lower end of the oleo cylinder housing. Two lug fractures that were determined to be the primary fractures were analyzed. Results of various examinations indicated that stress-corrosion cracking associated with the origins of the principal fractures in the connection was the cause of failure. It was recommended that the design be modified to avoid dissimilar metal combinations of high corrosion potential.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001451
EISBN: 978-1-62708-224-2
... be subject to compression and abrasion, with resultant work-hardening. In consequence, the yield point and the ultimate tensile strength of the material comprising the affected layer would be raised and its ductility decreased. In the case of a material prone to strain-ageing, as in this instance, the effect...
Abstract
During the lifting of a piece of machinery by means of an overhead travelling crane the hook fractured suddenly. The load was attached to the hook by means of fiber rope slings and rupture occurred in a plane which appeared to coincide with the sling loop nearest to the back of the hook. The rated capacity of the crane was 15 tons. At the time of the mishap it was being used to lift one end of a hydraulic cylinder with a total weight of about 27 tons. Fracture was of the cleavage type throughout. There was no evidence of any prior deformation of the material in the vicinity, nor was there any indication of a pre-existing crack or major discontinuity at the point of origin. A sulfur print suggested the hook had been forged from a billet cogged down from an ingot of semi-killed steel. Failure of this hook was attributed to strain-age embrittlement of the material at the surface of the intrados.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001753
EISBN: 978-1-62708-241-9
... (F temper) condition change rapidly during the first few weeks of room temperature aging, because of natural precipitation hardening. Additional hardening continues thereafter at a progressively slower rate.” After 54 years of service, it is expected that the component was exposed to service...
Abstract
A failure analysis investigation was conducted on a fractured aluminum tailwheel fork which failed moments after the landing of a privately owned, 1955 twin-engine airplane. Nondestructive evaluation via dye-penetrant inspection revealed no discernible surface cracks. The chemical composition of the sand-cast component was identified via optical emission spectroscopy and is comparable to an aluminum sand-cast alloy, AA 712.0. Metallographic evaluation via optical microscopy and scanning electron microscopy revealed a high degree of porosity in the microstructure as well as the presence of deleterious intermetallic compounds within interdendritic regions. Macrohardness testing produced hardness values which are noticeably higher than standard hardness values for 712.0. The primary fracture surfaces indicate evidence of mixed-mode fracture, via intergranular cracking, cleaved intermetallic particles, and dimpled cellular regions in the matrix. The secondary fracture surface demonstrates similar features of intergranular fracture.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001474
EISBN: 978-1-62708-224-2
... to bring about failure in a brittle manner, particularly if, as seems likely, shock loading conditions prevailed at the time of failure. In addition, the material was found to he susceptible to strain-age hardening and, therefore, probably strain-age embrittlement, and it is possible that its notch...
Abstract
A mild steel hook that was part of the auxiliary hoist of an electric overhead crane used in a foundry was of the shank type and the rated safe working load was 15 tons. Failure took place in a wholly brittle manner, and occurred transversely through the back of the hook. From the direction in which the fracture developed, as indicated by the radial lines on its surface, it was evident that a preexisting defect served to initiate the brittle fracture. Material adjacent to the fracture was decarburized and contained numerous globules of oxide and slag. It was evident, therefore that a fissure was formed during the manufacture of the hook and had not developed in service. The failure was associated with a surface defect, and it was recommended that the other similar hooks at the establishment be crack detected and any similar discontinuities eliminated.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
... polymers but not on a macroscopic scale in a metallic material. With regard to fatigue, materials with poor ductility can still experience crack initiation and growth, because some slight plasticity may by present. Relatively brittle metals such as hardened steel and gray cast iron do not always form...
Abstract
This article aims to identify and illustrate the types of overload failures, which are categorized as failures due to insufficient material strength and underdesign, failures due to stress concentration and material defects, and failures due to material alteration. It describes the general aspects of fracture modes and mechanisms. The article briefly reviews some mechanistic aspects of ductile and brittle crack propagation, including discussion on mixed-mode cracking. Factors associated with overload failures are discussed, and, where appropriate, preventive steps for reducing the likelihood of overload fractures are included. The article focuses primarily on the contribution of embrittlement to overload failure. The embrittling phenomena are described and differentiated by their causes, effects, and remedial methods, so that failure characteristics can be directly compared during practical failure investigation. The article describes the effects of mechanical loading on a part in service and provides information on laboratory fracture examination.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001723
EISBN: 978-1-62708-221-1
... ageing was a further factor in promoting brittleness, additional specimens were work-hardened on one sawn edge by hammer blows and others impressed with a notch formed by forcing into the specimen a 1 4 in. dia. hardened steel cylinder. Some were tested immediately afterwards and others after...
Abstract
A new crane failed during the overload test following erection. A test load of 5 tons at the end of the jib (rated capacity 4 tons) was in the process of being slewed at the time of this failure. Inspection revealed that the collapse had resulted from the opening out of one eye of the rimming steel tie-bar of the main jib at the lower splice. This permitted the pin to pass through and allowed the jib to fall. Examination subsequently revealed that brittle fracture of two of the corner angles of the tower head assembly had also occurred. Had the tie-bar material been of satisfactory quality and/or, if the end that failed had been flamecut instead of sheared, then the damage resulting from the excessive overload would have been limited to yielding of the material in the region of the pin-joint. Such yielding on an overload test further indicated that the scantlings of the pin-joints were inadequate. Two other crane failures showed that failure resulted from the use of rimming steel, and embrittlement of the material was evident.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
... ductility can still experience crack initiation and growth since some slight plasticity may by present. Relatively brittle metals such as hardened steel and gray cast iron do not always form microscopically identifiable striations and macroscopic beach marks in cyclic failures. Transgranular Cleavage...
Abstract
Overload failures refer to the ductile or brittle fracture of a material when stresses exceed the load-bearing capacity of a material. This article reviews some mechanistic aspects of ductile and brittle crack propagation, including a discussion on mixed-mode cracking, which may also occur when an overload failure is caused by a combination of ductile and brittle cracking mechanisms. It describes the general aspects of fracture modes and mechanisms. The article discusses some of the material, mechanical, and environmental factors that may be involved in determining the root cause of an overload failure. It also presents examples of thermally and environmentally induced embrittlement effects that can alter the overload fracture behavior of metals.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001707
EISBN: 978-1-62708-217-4
... appeared to be immune to SCC when aged above 975°F (523°C). Conclusions The failures of two aircraft components, one from a landing gear and the other from an ejector rack mechanism, were investigated. Both were made from PH 13-8 Mo (UNS S13800) precipitation hardening stainless steel that was heat...
Abstract
The failures of two aircraft components, one from a landing gear and the other from an ejector rack mechanism, were investigated. Both were made from PH 13-8 Mo (UNS S13800) precipitation-hardening stainless steel which had been heat treated to the H1000 and H950 tempers respectively and then chromium plated. The parts were characterized metallographically and mechanically and were found to be compliant. Detailed fractographic examination revealed that the first stage of both failures was similar: subsurface initiation of numerous cracks with a wide range of orientations and cleavage like features. The cracking was followed by fatigue in one case and catastrophic failure in the other. Hydrogen embrittlement was identified as the most likely mechanism of failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001520
EISBN: 978-1-62708-235-8
... test. Both part types were made of 15-5 PH (UNS S15500) precipitation hardening stainless steel. Hydrogen embrittlement cracking was the likely cause of failure for both part types. Cracking of the as-fabricated parts was ultimately prevented by changing the manufacturing procedure to allow...
Abstract
Two types of chromium-plated hydraulic cylinders failed by cracking on their outer surfaces. In one case, the parts had a history of cracking in the nominally unstressed, as-fabricated condition. In another, cracks were detected after the cylinders were subjected to a pressure impulse test. Both part types were made of 15-5 PH (UNS S15500) precipitation hardening stainless steel. Hydrogen embrittlement cracking was the likely cause of failure for both part types. Cracking of the as-fabricated parts was ultimately prevented by changing the manufacturing procedure to allow for a reheat treatment. For parts that cracked after pressure testing, excessive dimensional changes precluded the inclusion of a reheat treatment as a manufacturing step, and further failure was averted by carefully employing proper machining practices, avoiding abusive machining.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006775
EISBN: 978-1-62708-295-2
...). Source: Ref 30 There is also a particle size distribution in high-strength, age-hardening aluminum alloys, but different behavior in an aluminum casting alloy has been reported ( Ref 31 ). The iron- and/or silicon-rich phases are the inclusions that are smaller than other phases created...
Abstract
This article focuses on characterizing the fracture-surface appearance at the microscale and contains some discussion on both crack nucleation and propagation mechanisms that cause the fracture appearance. It begins with a discussion on microscale models and mechanisms for deformation and fracture. Next, the mechanisms of void nucleation and void coalescence are briefly described. Macroscale and microscale appearances of ductile and brittle fracture are then discussed for various specimen geometries (smooth cylindrical and prismatic) and loading conditions (e.g., tension compression, bending, torsion). Finally, the factors influencing the appearance of a fracture surface and various imperfections or stress raisers are described, followed by a root-cause failure analysis case history to illustrate some of these fractography concepts.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006816
EISBN: 978-1-62708-329-4
... that cause a part to fail during heat treatment. The article discusses the problems associated with heating and furnaces, quenching media, quenching stresses, hardenability, tempering, carburizing, carbonitriding, and nitriding as well as potential stainless steel problems and problems associated...
Abstract
This article introduces some of the general sources of heat treating problems with particular emphasis on problems caused by the actual heat treating process and the significant thermal and transformation stresses within a heat treated part. It addresses the design and material factors that cause a part to fail during heat treatment. The article discusses the problems associated with heating and furnaces, quenching media, quenching stresses, hardenability, tempering, carburizing, carbonitriding, and nitriding as well as potential stainless steel problems and problems associated with nonferrous heat treatments. The processes involved in cold working of certain ferrous and nonferrous alloys are also covered.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
... instability. Under certain conditions, both transgranular fracture and IG fracture are found. Consequently, an analysis of rupture-life data or component failure is not complete without a thorough metallographic examination to establish the initial failure mechanism. Aging Age-hardening alloys, which...
Abstract
This article reviews the applied aspects of creep and stress-rupture failures. It discusses the microstructural changes and bulk mechanical behavior of classical and nonclassical creep behavior. The article provides a description of microstructural changes and damage from creep deformation, including stress-rupture fractures. It also describes metallurgical instabilities, such as aging and carbide reactions, and evaluates the complex effects of creep-fatigue interaction. The article concludes with a discussion on thermal fatigue and creep fatigue failures.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001031
EISBN: 978-1-62708-214-3
..., is used for the liner, with cooling channels machined into it through which LH is pumped ( Fig. 1 ). NARloy-Z is a copper-base alloy containing 3% Ag and 0.5% Zr. Silver acts as a precipitation hardener, and zirconium acts as a getter for soluble oxygen. The NARloy-Z goes through a fabrication process...
Abstract
Pinhole defects were found in a main combustion chamber made from NARloy-Z after an unexpectedly short time in service. Analysis indicated that the throat section of the liner had been exposed to very severe environmental conditions of high temperature and high oxygen content, which caused ductility loss and grain-boundary separation. The excessive oxygen content in the liner was attributed to diffusion from an oxygen-rich environment that had resulted from nonuniform mixing of propellants. The internal oxygen embrittled the alloy and reduced its thermal conductivity, which resulted in a higher hot-gas wall temperature and associated degradation of mechanical properties.
1