Skip Nav Destination
Close Modal
Search Results for
abrading
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 42 Search Results for
abrading
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001244
EISBN: 978-1-62708-224-2
... 2 sq mm. The furnace temperature was said to be 500 deg C. In addition to the fractures they also showed many more or less advanced cracks. These occurred in the circumferential grooves that recurred at regular intervals. The fractures were abraded and oxidized. They could have been fatigue...
Abstract
The cross bars of conveyor belt links that served to transport glass containers through a stress relief furnace fractured in many cases. They consisted of wires of 5 mm diam made of low-carbon Siemens-Martin steel, while the interwoven longitudinal bars were made of strip steel of 4 x 2 sq mm. The furnace temperature was said to be 500 deg C. In addition to the fractures they also showed many more or less advanced cracks. These occurred in the circumferential grooves that recurred at regular intervals. The fractures were abraded and oxidized. They could have been fatigue fractures. The fracture probably was induced by the pressing-in or abrading of the sharp steel band edges into the surface of the cross bars. Torsion fatigue fractures may have started from these notches. Relaxation then contributed positively through recovery and recrystallization. Such damage occurs less frequently in round wire conveyor belt links because the round wire neither impresses so sharply nor abrades against the cross bars, and it also exerts less torsion than the flat wire.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048031
EISBN: 978-1-62708-224-2
... it was attached to a chain for pulling jammed scrap from the baler. The rope was heavily abraded and several of the individual wires were broken. a uniform cold-drawn microstructure, with patches of untempered martensite in regions of severe abrasion and crown wear was revealed by metallographic examination...
Abstract
The 16 mm diam 6 x 37 fiber-core improved plow steel wire rope on a scrapyard crane failed after two weeks of service under normal loading conditions. This type of rope was made of 0.71 to 0.75% carbon steel wires and a tensile strength of 1696 to 1917 MPa. The rope broke when it was attached to a chain for pulling jammed scrap from the baler. The rope was heavily abraded and several of the individual wires were broken. a uniform cold-drawn microstructure, with patches of untempered martensite in regions of severe abrasion and crown wear was revealed by metallographic examination. As a result of abrasion, a hard layer of martensite was formed on the wire. The wire was made susceptible to fatigue cracking, while bending around the sheave, by this brittle surface layer. The carbon content and tensile strength of the wire was found lower than specifications. As a corrective measure, this wire rope was substituted by the more abrasion resistant 6 x 19 rope.
Image
Published: 01 December 1992
Fig. 4 Face of area C. Closeup view showing dirt and slag on the fracture surface. Note mechanically abraded (rubbed) area, which obscures fracture details ∼2×.
More
Image
in Fatigue Fracture of Individual Steel Wires in a Hoisting Rope
> ASM Failure Analysis Case Histories: Material Handling Equipment
Published: 01 June 2019
Fig. 1 Wire rope, made of improved plow steel with a fiber core, that failed because of heavy abrasion and crushing under normal loading. (a) Crushed rope showing abraded wires and crown wear. 1.8×. (b) Nital-etched specimen showing martensite layer (top) and uniform, heavily drawn
More
Image
in Corrosion Failure of Wing Flap Hinge Bearings
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
of bearing 2. The crack front was abraded, so the area of origin would not be clearly defined. 2.5x. (f) Corrosion pits on the inside surface of one of the bearings. All three bearings submitted had this type of damage. 10x. (g) Cross section of corrosion pit on one of the bearings; note the intergranular
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001451
EISBN: 978-1-62708-224-2
... in an attempt to increase the bend angle. The hardness of the original surface of a strip cut from the side of the hook was 138; this surface was then severely abraded under heavy pressure, when the hardness increased to 170. This specimen bent to an angle of 90°, with the abraded surface on the tension side...
Abstract
During the lifting of a piece of machinery by means of an overhead travelling crane the hook fractured suddenly. The load was attached to the hook by means of fiber rope slings and rupture occurred in a plane which appeared to coincide with the sling loop nearest to the back of the hook. The rated capacity of the crane was 15 tons. At the time of the mishap it was being used to lift one end of a hydraulic cylinder with a total weight of about 27 tons. Fracture was of the cleavage type throughout. There was no evidence of any prior deformation of the material in the vicinity, nor was there any indication of a pre-existing crack or major discontinuity at the point of origin. A sulfur print suggested the hook had been forged from a billet cogged down from an ingot of semi-killed steel. Failure of this hook was attributed to strain-age embrittlement of the material at the surface of the intrados.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046418
EISBN: 978-1-62708-234-1
... at the 4.8-cm (1.875-in.) location (particularly over about 180° of the circumference) than in the band at the 9-cm (3.5625-in.) location. Also, a circumferential groove about 1.3 cm (0.5 in.) wide and having a maximum depth of about 0.25 mm (0.010 in.) had been abraded on the 7.5-cm (3-in.) diam section...
Abstract
Equipment in which an assembly of in-line cylindrical components rotated in water at 1040 rpm displayed excessive vibration after less than one hour of operation. The malfunction was traced to an aluminum alloy 6061-T6 combustion chamber that was part of the rotating assembly. Analysis (visual inspection, 100x/500x/800x micrographic examination, spectrographic analysis, and hardness testing) supported the conclusions that, as a result of improper heat treatment, the combustion-chamber material was too soft for successful use in this application. Misalignment of the combustion chamber and one or both of the mating parts resulted in eccentric rotation and the excessive vibration that caused malfunction of the assembly. Irregularities in the housing around the combustion chamber and temperature variation relating to the combustion pattern in the chamber were considered to be possible contributing factors to localization of the cavitation erosion. Recommendations included adopting inspection procedures to ensure that the specified properties of aluminum alloy 6061-T6 were obtained and that the combustion chamber and adjacent components were aligned within specified tolerances. In a similar situation, consideration should also be given to raising the pressure in the coolant in order to suppress the formation of cavitation bubbles.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001646
EISBN: 978-1-62708-219-8
... in the shiny abraded regions. Microstructural Features Microstructural examination of transverse and longitudinal wire sections at the abraded regions near the fracture ends showed untempered surface martensite in all the broken wire samples. The microstructure underlying the bands of surface martensite...
Abstract
Locked coil wire ropes, by virtue of their unique design and construction, have specialized applications in aerial ropeways, mine hoist installations, suspension bridge cables, and so forth. In such specialty ropes, the outer layer is constructed of Z-profile wires that provide not only effective interlocking but also a continuous working surface for withstanding in-service wear. The compact construction and fill-factor of locked coil wire ropes make them relatively impervious to the ingress of moisture and render them less vulnerable to corrosion. However, such ropes are comparatively more rigid than conventional wire ropes with fiber cores and therefore are more susceptible to the adverse effects of bending stresses. The reasons for premature in-service wire rope failures are rather complex but frequently may be attributed to inappropriate wire quality and/or abusive operating environment. In either case, a systematic investigation to diagnose precisely the genesis of failure is desirable. This article provides a microstructural insight into the causes of wire breakages on the outer layer of a 40 mm diam locked coil wire rope during service. The study reveals that the breakages of Z-profile wires on the outer rope layer were abrasion induced and accentuated by arrays of fine transverse cracks that developed on a surface martensite layer.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046142
EISBN: 978-1-62708-217-4
... were abraded from rubbing against the mating part. The sides of the elongated hole in the slotted arm were polished by motion of the mating member. There was negligible wear in the round hole and in the elongated holes where fracture occurred. The crack initiated at the sharp corner of the milled...
Abstract
To ensure no malfunctions and although there were no apparent problems, a main fuel control was returned to the factory for examination after service on a test aircraft engine that had experienced high vibrations. When the fuel control was disassembled, a lever, cast from AMS 5350 (AISI type 410) stainless steel that was through-hardened to 26 to 32 HRC and passivated, was shown to be cracked. The crack initiated at the sharp corner of the elongated milled slot and propagated across to the outer wall. The sections around the crack were spread about 30 deg apart, showing the fracture surface under investigation had beach marks initiating at the sharp corner along the milled slot. Changes in frequency or amplitude of vibration caused different rates of propagation, resulting in a change in pattern. This evidence supported the conclusion that the lever failed in fatigue as a result of excessive vibration of the fuel control on the test engine. Recommendations included redesign of the lever with a large radius in the corner where cracking originated. This would reduce the stress-concentration factor significantly, thus minimizing the susceptibility of the lever to fatigue.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003572
EISBN: 978-1-62708-180-1
... of microscopic interactions of the surface and the abradant as shown in Fig. 1 ( Ref 12 ). Microplowing and microcutting are the dominant processes in the abrasion of ductile materials, while microcracking is important in brittle materials. Fig. 1 Schematic of different interactions during sliding...
Abstract
This article reviews the abrasive and adhesive wear failure of several types of reinforced polymers, including particulate-reinforced polymers, short-fiber reinforced polymers (SFRP), continuous unidirectional fiber reinforced polymers (FRP), particulate-filled composites, mixed composites (SFRP and particulate-filled), unidirectional FRP composites, and fabric reinforced composites. Friction and wear performance of the composites, correlation of performance with various materials properties, and studies on wear-of failure mechanisms by scanning electron microscopy are discussed for each of these types.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006448
EISBN: 978-1-62708-217-4
...) Fracture surface of second crack in bearing 1. Arrow shows the probable fracture origin. 2.5x. (e) Fracture surface of bearing 2. The crack front was abraded, so the area of origin would not be clearly defined. 2.5x. (f) Corrosion pits on the inside surface of one of the bearings. All three bearings...
Abstract
Three wing flap hinge bearings were received by the laboratory for analysis. The bearings were fabricated from chromium-plated type 440C martensitic stainless steel. The intergranular fracture pattern seen in the electron fractographs, coupled with the corrosion pits observed on the inner diam of the bearings, strongly suggested that failure initiated by pitting and progressed by SCC or hydrogen embrittlement from the plating operation. It was recommended that the extent of the flap hinge bearing cracking problem be determined by using nondestructive inspection because it is possible to crack hardened type 440C during the chromium plating process. An inspection for pitting on the bearing inner diam was also recommended. It was suggested that electroless nickel be used as a coating for the entire bearing. A review of the chromium plating and baking sequence was recommended also to ensure that a source of hydrogen is not introduced during the plating operation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001205
EISBN: 978-1-62708-219-8
.... Fig. 2 Longitudinal section through support structures. approx. 1 5 × Figure 3 shows the fracture which was exposed after the bellshaped cap was opened up. The fracture occurred as rough jags around the tubing. The fracture plane was strongly abraded, so that neither the origin...
Abstract
A cross crowned by a gilded cock on a church steeple hung in a slanted position from its support after a stormy night. Fracture had occurred on the shaft of the cross which was formed by a seamless steel tubing of 60 mm OD and 2.7 mm wall thickness. The fracture had not occurred at the point of highest stress, but approximately 200 mm above it. A bell-shaped sheet metal cap was welded onto the shaft at this point. The tubing had fractured about 10 mm under this weld seam. The steel of the shaft tubing contained only 0.033P and 0.004N, and thus was not considered prone to brittle fracture or unsuitable for welded structures. Investigation showed the design of the cross was an unfortunate mistake. If the bell-shaped cap was really essential it should have been fastened by means other than welding. Furthermore, the welding was done poorly after an initial aborted attempt. This was the primary cause of fracture.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c9001229
EISBN: 978-1-62708-223-5
... of highest operating stress. That contradicts the assumption that they may have been formed already during stamping, After breaking open a crack, an abraded fracture grain emerged as well as a dark stain ( Fig. 3 ). The existence of a narrow grainy fracture zone around the center plane of the blade led...
Abstract
Two slitting saw blades were delivered for the purpose of determining the cause of damage. One had cracked while the other one came from a prior sheet delivery, that had less tendency to crack formation according to the manufacturer. The blades were supposed to have been stamped out of a sheet made from a 55 kp/sq mm strength steel. The saw blades were used for separating steel profiles at high rotational speeds. The cracks in question were located at the base of the teeth, i.e. at the point of highest operating stress. Metallographic examination showed that all cracks were non-decarburized and were free of chromium deposits. Therefore they could not have existed before heat treatment and chrome plating. It was concluded that the damage was due neither to poor quality of the sheet nor to defective stamping or heat treatment, but had occurred later either during surface treatment or during operation.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006789
EISBN: 978-1-62708-295-2
... an abrasive action or, more often, when hard particles are firmly embedded into one of the two bodies in contact. The resulting wear strongly depends on the angularity of the abrading medium, that is, on the average slope or roughness of the abrading surface. Wear can be evaluated using Eq 1, assuming ( Ref 5...
Abstract
This article considers the main characteristics of wear mechanisms and how they can be identified. Some identification examples are reported, with the warning that this task can be difficult because of the presence of disturbing factors such as contaminants or possible additional damage of the worn products after the tribological process. Then, the article describes some examples of wear processes, considering possible transitions and/or interactions of the mechanism of fretting wear, rolling-sliding wear, abrasive wear, and solid-particle erosion wear. The role of tribological parameters on the material response is presented using the wear map concept, which is very useful and informative in several respects. The article concludes with guidelines for the selection of suitable surface treatments to avoid wear failures.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001129
EISBN: 978-1-62708-214-3
... was stripped. ∼0.72×. Fig. 4 Face of area C. Closeup view showing dirt and slag on the fracture surface. Note mechanically abraded (rubbed) area, which obscures fracture details ∼2×. Fig. 5 Coarse fatigue striations on area B.∼1.8×. Fig. 6 SEM micrograph of area B, illustrating...
Abstract
The failure of a 45 Mg (50 ton) rail crane bolster was investigated. Spectrochemical analysis indicated that the material was a 0.25C-1.24Mn-0.62Cr-0.24Mo cast steel. SEM examination revealed the presence of fatigue, as well as intergranular and ductile fractures. Microstructural analysis focused on an area where an antisway device had been welded to the structure and revealed the presence of coarse, untempered martensite that had resulted from faulty weld repair techniques. It was suggested that the use of proper welding procedures, including preheating and postheating, would have prevented the failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001527
EISBN: 978-1-62708-224-2
... mechanically damaged after failure, as the separated wires are often dragged through sheaves or abraded against other components. In addition, the extreme energy dissipation upon failure often results in considerable post-fracture damage that can be misleading to an investigator. Relatively rapid general...
Abstract
Mechanical properties of wire ropes, their chemical composition, and the failure analysis process for them are described. The wires are manufactured from high-carbon, plain carbon steel, with high-strength ropes most often manufactured from AISI Grade 1074. During visual failure examination, the rope, strand, and wire diameters should all be measured. Examination should also address the presence or absence of lubricant, corrosion evidence, and gross mechanical damage. Failed wires can exhibit classic cup-and-cone ductile features, flat fatigue features, and various appearances in-between. However, wires are often mechanically damaged after failure. Most nondestructive evaluation (NDE) techniques are not applicable to wire rope failures. Electron microscope fractography of fracture surfaces is essential in failure analysis. Fatigue is the most important fracture mode in wire ropes. Metallographic features of wire ropes that failed because of ductile overload and fatigue are described.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001727
EISBN: 978-1-62708-225-9
... and the anodized layer is not abraded. Failure analysis established that the composition was within specification, as were hardness and tensile properties. Fracture was intergranular; there was no evidence of grinding, burning, mechanical damage, or other microstructural conditions. The significant...
Abstract
Several stainless steel bolts used on a Titan Space Launch Vehicle broke at the shank and failure was attributed to stress-corrosion cracking. But results could not be duplicated in the laboratory with salt-solution immersion tests until the real culprit was established: the secondary effect of galvanic coupling, hydrogen embrittlement.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001543
EISBN: 978-1-62708-218-1
... speeds of auto racing impose great burdens on engine components, particularly aluminum pistons. Temperatures are so high, in fact, that crowns of pistons can actually melt. Weakening, due to overaging, also occurs. Hard particles of aluminum oxide (Al 2 O 3 ) form as the piston alloy oxidizes, and abrade...
Abstract
To determine the effect of severe service on cast 357 aluminum pistons, a metallurgical evaluation was made of four pistons removed from the engine of the Hawk-Offenhauser car which had been driven by Rich Muther in the first Ontario, California 500 race. The pistons were studied by visual inspection, hardness traverses, radiography, dye penetrant inspection, chemical analysis, macrometallography, optical microscopy, and electron microscopy. The crown of one piston had a rough, crumbly deposit, which was detachable with a knife. Two pistons had remains of carbonaceous deposits. The fourth was severely hammered. It was concluded that the high temperatures developed in this engine created an environment too severe for 357 aluminum. Surfaces were so hot that the low-melting constituent melted. Then, the alloy oxidized rapidly to form Al2O3, an abrasive which further aggravated problems. The temperature in much of the piston was high enough to cause softening by overaging, lowering strength.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0091853
EISBN: 978-1-62708-223-5
... become embedded in the two grinding plates and abrade through, scratching the wear ring surfaces at the edge of the plate. Initially, the clearance between the plates is set to zero, but as the quartz particles flow into the space between the plates, they wedge them apart. The particles wedged between...
Abstract
A 230 mm (9 in.) diameter disk attrition mill was scheduled to grind 6.35 mm (0.25 in.) diameter quartz particles to a 0.075 mm (0.003 in.) diameter powder. Due to severe wear on the grinding plates, however, the unit was unable to complete the task of grinding the rock. The mill consisted of a heavy gray cast iron frame, a gravity feeder port, a runner, and a heavy-duty motor. The frame and gravity feeder weighed over 200 kg (440 lb) and, in some areas, was over 25 mm (1 in.) thick. To obtain the operating speed of 200 rpm, a gear system was used to transmit the torque from the 2-hp motor. The runner consisted of a 50 mm (2 in.) diameter shaft and two gray cast iron grinding plates. Investigation (visual inspection, historical review, photographs, model testing of new plates, chemical analysis, hardness testing, optical macrographs, and optical micrographs) supported the conclusion that the primary feed material was harder than the grinding plates, causing wear and eventual failure. Recommendations included reducing the clearance between the flutes and possible material changes.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001846
EISBN: 978-1-62708-241-9
.... The failure mechanism of the sleeve is the mix of abrade and adhesive wear. The failure mechanism of the main shaft is low-cycle and rotation-bending fatigue fracture. The bearing sleeve and the journal surface assembled with the sleeve had subjected to abnormal high temperature, which was attributed...
Abstract
The main shaft in a locomotive turbocharger fractured along with an associated bearing sleeve. Visual and fractographic examination revealed that the shaft fractured at a sharp-edged groove between two journals of different cross-sectional area. The dominant failure mechanism was low-cycle rotation-bending fatigue. The bearing sleeve failed as a result of abrasive and adhesive wear. Detailed metallurgical analysis indicated that the sleeve and its respective journal had been subjected to abnormally high temperatures, increasing the amount of friction between the sleeve, bearing bush, and journal surface. The excessive heat also softened the induction-hardened case on the journal surface, decreasing its fatigue strength. Fatigue crack initiation occurred at the root fillet of the groove because of stress concentration.
1