1-20 of 50 Search Results for

X-ray spectrometers

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2002
Fig. 6 Schematic of a complete energy-dispersive x-ray spectrometer used in electron-probe x-ray microanalysis. Various pulse processing functions and the multichannel analyzer are shown. FET, field effect transistor More
Image
Published: 15 January 2021
Fig. 2 Schematic of a silicon-lithium energy-dispersive x-ray spectrometer. Courtesy of Thermo Fisher Scientific More
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006770
EISBN: 978-1-62708-295-2
... on the operating principles and applications of detectors for x-ray spectroscopy, namely energy-dispersive spectrometers, wavelength-dispersive spectrometers, and handheld x-ray fluorescence systems. The processes involved in x-ray analysis in the SEM and handheld x-ray fluorescence analysis are then covered...
Image
Published: 01 January 2002
Fig. 5 Schematic diagram of the components of a wavelength-dispersive x-ray spectrometer More
Image
Published: 01 June 2019
Fig. 4 X-ray map of the distribution of oxygen (obtained by wavelength spectrometer) in the area covered by Figure 23 showing that the inclusion particles contain a lot of oxygen; 150×. More
Image
Published: 15 May 2022
Fig. 57 Block diagram of a typical x-ray photoelectron spectroscopy spectrometer. UHV, ultrahigh vacuum More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c9001622
EISBN: 978-1-62708-222-8
...) failure A stamped coin exhibited visible discolored areas, seen as a tan haze on the surface ( Fig. 1 ). In this case, the discoloration was considered merely cosmetic. The nonstained and stained regions were studied using a scanning electron microscope equipped with an energy-dispersive X-ray...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003529
EISBN: 978-1-62708-180-1
... a second (less common in commercial laboratories) choice for the x-ray spectrometer: the wavelength-dispersive spectrometer, or WDS. The main difference between the EDS and WDS microprobe techniques is the method of detecting the x-rays. The original design by Castaing utilized a wavelength-dispersive...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001088
EISBN: 978-1-62708-214-3
... in the origin area. 1.3×. Fig. 3 Fracture surface of specimen A. Arrow indicates fracture origin on the OD surface and in the toe of a weld nugget (see Fig. 2 ). 1.94×. Testing Procedure and Results Surface Examination Energy-Dispersive X-ray Spectrometer Analysis The undamaged...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001490
EISBN: 978-1-62708-232-7
... to 0.2 inch or more in only about one inch (from C to E in Figure 4 ). Fig. 4 X-ray map of the distribution of oxygen (obtained by wavelength spectrometer) in the area covered by Figure 23 showing that the inclusion particles contain a lot of oxygen; 150×. Microstructure of the Failed Pot...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001269
EISBN: 978-1-62708-215-0
... examination. Surprisingly, the clamping force of the vise and stress from sectioning was sufficient to cause additional multiple fractures. Scanning Electron Microscopy/EDS A Leica S-200 scanning electron microscope (SEM) equipped with a light element detecting energy dispersive x-ray spectrometer (EDS...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001845
EISBN: 978-1-62708-241-9
... The aim of the present investigation is to identify the root cause of failure and propose corrective measures. Visual inspection, scanning electron microscopy (SEM) equipped with an energy-dispersive X-ray (EDX) spectrometer for fractographic and microstructural evaluation, along with chemical analysis...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006771
EISBN: 978-1-62708-295-2
... is accomplished by flooding the sample with x-rays of a known energy (typically monochromated aluminum Kα at 1486.7 eV). Absorption of these x-rays by the sample atoms causes photoelectrons to be emitted. The kinetic energy of the emitted photoelectrons is measured with an electron spectrometer. To a first...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003534
EISBN: 978-1-62708-180-1
.... The kinetic energy of the emitted photoelectrons is measured with an electron spectrometer. To a first approximation, the kinetic energy is determined from the following equation: KE = h ν − BE where KE is the measured kinetic energy of the emitted photoelectron, hν is the energy of the x-rays...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006766
EISBN: 978-1-62708-295-2
... covers the operating principles, applications, advantages, and disadvantages of optical emission spectroscopy (OES), inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray spectroscopy, and ion chromatography (IC). In addition, information on combustion analysis and inert gas fusion...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006943
EISBN: 978-1-62708-395-9
... Abstract This article discusses the operating principles, advantages, and limitations of scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, and secondary ion mass spectroscopy that are used to analyze the surface chemistry of plastics. atomic force...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001798
EISBN: 978-1-62708-241-9
... Tree was theoretically built, and the structural variations of the failed encapsulant were characterized compared with the normal encapsulant, using Fourier-transform infrared spectrometer (FTIR), x-ray energy dispersive spectrum (EDS), and differential scanning calorimetry coupled...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001811
EISBN: 978-1-62708-241-9
... to be homogenous and had no banded structure. However, x-ray diffraction analysis confirmed the presence of up to 6% retained austenite which likely caused the tube to buckle during the 910 °C heat treating procedure. tube buckling retained austenite bainitic steel distortion x-ray diffraction analysis...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003522
EISBN: 978-1-62708-180-1
... that can simultaneously count and determine the energy of emitted x-rays. Such an energy-dispersive detector contrasts with the wavelength-dispersive spectrometers used on the original electron probe microanalyzer developed by Castaing in 1948. The x-rays are generated when a sample of the area of interest...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003533
EISBN: 978-1-62708-180-1
... be determined. The precision and accuracy of the determination depends on the type of x-ray detector used and how the analysis is carried out. Detectors that determine composition based on the wavelength of the emitted x-ray are termed wavelength dispersive spectrometers or WDS. Using WDS and pure elemental...