Skip Nav Destination
Close Modal
Search Results for
X-ray absorption fine structure analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 42 Search Results for
X-ray absorption fine structure analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006770
EISBN: 978-1-62708-295-2
... in failure analysis than the more exact instrumentation employed in SEMs, the technology is advancing and is worthy of note due to its capability for nondestructive analysis and application in the field. This article begins with information on the basis of the x-ray signal. This is followed by information...
Abstract
X-ray spectroscopy is generally accepted as the most useful ancillary technique that can be added to any scanning electron microscope (SEM), even to the point of being considered a necessity by most operators. While “stand-alone” x-ray detection systems are used less frequently in failure analysis than the more exact instrumentation employed in SEMs, the technology is advancing and is worthy of note due to its capability for nondestructive analysis and application in the field. This article begins with information on the basis of the x-ray signal. This is followed by information on the operating principles and applications of detectors for x-ray spectroscopy, namely energy-dispersive spectrometers, wavelength-dispersive spectrometers, and handheld x-ray fluorescence systems. The processes involved in x-ray analysis in the SEM and handheld x-ray fluorescence analysis are then covered. The article ends with a discussion on the applications of x-ray spectroscopy in failure analysis.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003522
EISBN: 978-1-62708-180-1
.../Intermetallics Bulk chemical analysis of ceramic and intermetallic components that have failed may be made in several ways, including wet analytical chemistry, ultraviolet/visible absorption spectroscopy, and molecular fluorescence spectroscopy. Additionally, x-ray diffraction analysis is particularly...
Abstract
This article focuses on the visual or macroscopic examination of damaged materials and interpretation of damage and fracture features. Analytical tools available for evaluations of corrosion and wear damage features include energy dispersive spectroscopy, electron probe microanalysis, Auger electron spectroscopy, secondary ion mass spectroscopy, and X-ray powder diffraction. The article discusses the analysis and interpretation of base material composition and microstructures. Preparation and examination of metallographic specimens in failure analysis are also discussed. The article concludes with a review of the evaluation of polymers and ceramic materials in failure analysis.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006757
EISBN: 978-1-62708-295-2
... analysis X-ray diffraction analysis Further details of polymer characterization are discussed in Ref 8. A brief scheme of structure analysis as it relates to material failure is presented in Table 2 . A typical problem a materials engineer must face is the evaluation of a piece of failed...
Abstract
Examination of a damaged component involves a chain of activities that, first and foremost, requires good observation and documentation. Following receipt and documentation, the features of damage can be recorded and their cause(s) investigated, as this article briefly describes, for typical types of damage experienced for metallic components. This article discusses the processes involved in visual or macroscopic examination of damaged material; the interpretation of fracture features, corrosion, and wear damage features; and the analysis of base material composition. It covers the processes involved in the selection of metallurgical samples, the preparation and examination of metallographic specimens in failure analysis, and the analysis and interpretation of microstructures. Examination and evaluation of polymers and ceramic materials in failure analysis are also briefly discussed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006764
EISBN: 978-1-62708-295-2
... (volumetric) inspection in failure analysis also are described. The common NDE methods of internal flaw detection and location include radiography, ultrasound, and x-ray computed tomography ( Table 2 ). These techniques are capable of detecting internal voids, cracks, seams, or material discontinuities...
Abstract
Nondestructive testing (NDT), also known as nondestructive evaluation (NDE), includes various techniques to characterize materials without damage. This article focuses on the typical NDE techniques that may be considered when conducting a failure investigation. The article begins with discussion about the concept of the probability of detection (POD), on which the statistical reliability of crack detection is based. The coverage includes the various methods of surface inspection, including visual-examination tools, scanning technology in dimensional metrology, and the common methods of detecting surface discontinuities by magnetic-particle inspection, liquid penetrant inspection, and eddy-current testing. The major NDE methods for internal (volumetric) inspection in failure analysis also are described.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006768
EISBN: 978-1-62708-295-2
.... , Residual Stress: Measurement by Diffraction and Interpretation , Springer-Verlag , 1987 2. Hauk V. , Structural and Residual Stress Analysis by Nondestructive Methods , Elsevier , 1997 3. Hilley M.E. et al. , “ Residual Stress Measurement by X-Ray Diffraction ,” HS784...
Abstract
X-ray diffraction (XRD) residual-stress analysis is an essential tool for failure analysis. This article focuses primarily on what the analyst should know about applying XRD residual-stress measurement techniques to failure analysis. Discussions are extended to the description of ways in which XRD can be applied to the characterization of residual stresses in a component or assembly and to the subsequent evaluation of corrective actions that alter the residual-stress state of a component for the purposes of preventing, minimizing, or eradicating the contribution of residual stress to premature failures. The article presents a practical approach to sample selection and specimen preparation, measurement location selection, and measurement depth selection; measurement validation is outlined as well. A number of case studies and examples are cited. The article also briefly summarizes the theory of XRD analysis and describes advances in equipment capability.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003534
EISBN: 978-1-62708-180-1
... depth of analysis is approximately 5 nm. X-ray photoelectron spectroscopy is accomplished by flooding the sample with x-rays of a known energy (typically Mg Kα at 1253.6 eV or monochromated Al Kα at 1486.7 eV). Absorption of these x-rays by the sample atoms causes photoelectrons to be emitted...
Abstract
This article provides information on the chemical characterization of surfaces by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). It describes the basic theory behind each of these techniques, the types of data produced from each, and some typical applications. The article explains the strengths of AES, XPS, and TOF-SIMS based on data obtained from the surface of a slightly corroded stainless steel sheet.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003528
EISBN: 978-1-62708-180-1
... Abstract This article focuses primarily on what an analyst should know about applying X-ray diffraction (XRD) residual stress measurement techniques to failure analysis. Discussions are extended to the description of ways in which XRD can be applied to the characterization of residual stresses...
Abstract
This article focuses primarily on what an analyst should know about applying X-ray diffraction (XRD) residual stress measurement techniques to failure analysis. Discussions are extended to the description of ways in which XRD can be applied to the characterization of residual stresses in a component or assembly. The article describes the steps required to calibrate instrumentation and to validate stress measurement results. It presents a practical approach to sample selection and specimen preparation, measurement location selection, and measurement depth selection, as well as an outline on measurement validation. The article also provides information on stress-corrosion cracking and corrosion fatigue. The importance of residual stress in fatigue is described with examples. The article explains the effects of heat treatment and manufacturing processes on residual stress. It concludes with a section on the XRD stress measurements in multiphase materials and composites and in locations of stress concentration.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006771
EISBN: 978-1-62708-295-2
... highlight the typical data sets and strengths of each technique. Auger electron spectroscopy surface analysis time-of-flight secondary ion mass spectrometry X-ray photoelectron spectroscopy MANY ANALYTICAL TECHNIQUES are available for the study and characterization of surfaces...
Abstract
This article covers the three most popular techniques used to characterize the very outermost layers of solid surfaces: Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). Some of the more important attributes are listed for preliminary insight into the strengths and limitations of these techniques for chemical characterization of surfaces. The article describes the basic theory behind each of the different techniques, the types of data produced from each, and some typical applications. Also discussed are the different types of samples that can be analyzed and the special sample-handling procedures that must be implemented when preparing to do failure analysis using these surface-sensitive techniques. Data obtained from different material defects are presented for each of the techniques. The examples presented highlight the typical data sets and strengths of each technique.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001387
EISBN: 978-1-62708-215-0
.... It consisted primarily of iron (77.6%), with copper, chromium, nickel, and manganese present in small amounts. x-ray diffraction (XRD) of the powder was carried out to determine its crystal structure. Results indicated the presence of alpha-iron ( Fig. 7 ). The electrical conductivity of the powder...
Abstract
Nickel anodes failed in several electrolysis cells in a heavy-water upgrading plant. Dismantling of a cell revealed gouging and the presence of loosely attached black porous masses on the anode. The carbon steel top, plate was severely corroded. An appreciable quantity of black powder was also present on the bottom or the cell. SEM/EDX studies of the outer and inner surfaces of the gouged anode showed the presence of iron globules at the interface between the gouged and the unattacked anode. The chemical composition of the black powder was determined to be primarily iron. Cell malfunction was attributed to the accelerated dissolution of the carbon steel anode top, dislodgment of grains from the material, and subsequent closing of the small annular space between the anode and the cathode by debris from the anode top. Cladding of the carbon steel top with a corrosion-resistant material, such as nickel, nickel-base alloy, or stainless steel, was recommended.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003529
EISBN: 978-1-62708-180-1
... product on a fracture surface should generally be confined to the strictly qualitative mode. Interpreting the quantitative results from such a test would be very difficult at best. Wavelength-Dispersive Spectrometry Microchemical Analysis In modern x-ray microanalysis, the analyst actually has...
Abstract
This article describes some of the common elemental composition analysis methods and explains the concept of referee and economy test methods in failure analysis. It discusses different types of microchemical analyses, including backscattered electron imaging, energy-dispersive spectrometry, and wavelength-dispersive spectrometry. The article concludes with information on specimen handling.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006786
EISBN: 978-1-62708-295-2
... techniques, such as Auger electron spectroscopy (AES), electron spectroscopy for chemical analysis (ESCA), or x-ray photoelectron spectroscopy (XPS). Evaluation of the embrittled material surface is not very easy to do in the SEM. Removal of the coating of resolidified metal on the fracture surface...
Abstract
Metal-induced embrittlement is a phenomenon in which the ductility or the fracture stress of a solid metal is reduced by surface contact with another metal in either the liquid or solid form. This article summarizes some of the characteristics of liquid-metal- and solid-metal-induced embrittlement. This phenomenon shares many of these characteristics with other modes of environmentally induced cracking, such as hydrogen embrittlement and stress-corrosion cracking. The discussion covers the occurrence, failure analysis, and service failures of the embrittlement. The article also briefly reviews some commercial alloy systems in which liquid-metal-induced embrittlement or solid-metal-induced embrittlement has been documented and describes some examples of cracking due to these phenomena, either in manufacturing or in service.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003524
EISBN: 978-1-62708-180-1
... of electromagnetic inspection include: Depth of penetration is shallow. Materials to be inspected must be electrically conductive. Indications are influenced by more than one variable. Reference standards are required. Residual Stress Analysis X-ray diffraction is the most common method...
Abstract
This article describes the preliminary stages and general procedures, techniques, and precautions employed in the investigation and analysis of metallurgical failures that occur in service. The most common causes of failure characteristics are described for fracture, corrosion, and wear failures. The article provides information on the synthesis and interpretation of results from the investigation. Finally, it presents key guidelines for conducting a failure analysis.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006782
EISBN: 978-1-62708-295-2
... technique for quantitative elemental analysis, comparing it to a standard solution, and the argon plasma-excitation source is used to generate a signal at the analytical wavelength for each element. The accuracy of the analysis is 0.01 wt% of the measured value. X-ray fluorescence spectroscopy...
Abstract
Corrosion is the deterioration of a material by a reaction of that material with its environment. The realization that corrosion control can be profitable has been acknowledged repeatedly by industry, typically following costly business interruptions. This article describes the electrochemical nature of corrosion and provides the typical analysis of environmental- and corrosion-related failures. It presents common methods of testing of laboratory corrosion and discusses the processes involved in the prevention of environmental- and corrosion-related failures of metals and nonmetals.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001122
EISBN: 978-1-62708-214-3
... etched. Chemical Analysis/Identification Material Chemical composition of the hammerhead was determined by emission spectrometry. Chemical composition of the chip and hammerhead were compared by energy-dispersive X-ray (EDX) analysis using a scanning electron microscope (SEM). Results were...
Abstract
A sledge hammer chipped during use. The chip struck a by stander in the eye, leading to its loss. The hammerhead surface was examined visually, nondestructively (magnetic particle method), and stereo microscopically, and a microstructural analysis of a cross section of the head was conducted using optical microscope. Chemical composition of the hammerhead was determined by emission spectrometry. The chemical compositions of the chip and hammer head were compared using energy-dispersive analysis. Microhardness versus distance from the striking face was also determined. The hammerhead material was UNS G10800 (AISI/SAE grade 1080). Excessive hardnesses were measured in the first 3 mm (0. 12 in.) below the striking surface, indicating that there was lack of control during the final tempering operation.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001822
EISBN: 978-1-62708-180-1
... with the traction-motor support bearing exhibited scale, and some of the friction-bearing material was present, as identified by x-ray fluorescence and diffraction. Fig. 1 Fracture surface at the drive-wheel side of axle 1611. Fig. 2 Fracture surface at the commutator side of axle 1611. Fig...
Abstract
This article provides a background of friction-bearing failures due to overheating. The failures of locomotive axles caused by overheated traction-motor support bearings are discussed. The article also describes liquid-metal embrittlement (LME) in steel. It examines the results of various axle studies, with illustrations and concludes with information on the simulation of the LME mechanism.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003554
EISBN: 978-1-62708-180-1
...-contaminated welds were detected by x-ray radiography and removed, and the mercury absorption material was replaced. A similar failure has been reported in an aluminum alloy piping elbow in a cryogenic unit at an ethylene plant ( Fig. 1 ) ( Ref 6 , 7 ). In this case, the mercury was received in shipments...
Abstract
Metal-induced embrittlement is a phenomenon in which the ductility or fracture stress of a solid metal is reduced by surface contact with another metal in either liquid or solid form. This article summarizes the characteristics of solid metal induced embrittlement (SMIE) and liquid metal induced embrittlement (LMIE). It describes the unique features that assist in arriving at a clear conclusion whether SMIE or LMIE is the most probable cause of the problem. The article briefly reviews some commercial alloy systems where LMIE or SMIE has been documented. It also provides some examples of cracking due to these phenomena, either in manufacturing or in service.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001817
EISBN: 978-1-62708-180-1
... A tube sample from an aluminum brass seawater surface condenser was received for analysis. This condenser had failed due to pitting after less than 1 year of service. Investigation Metallographic analysis, energy-dispersive x-ray spectrometry, and x-ray diffraction were used to analyze the tube...
Abstract
This article describes the characteristics of tubing of heat exchangers with respect to general corrosion, stress-corrosion cracking, selective leaching, and oxygen-cell attack, with examples. It illustrates the examination of failed parts of heat exchangers by using sample selection, visual examination, microscopic examination, chemical analysis, and mechanical tests. The article explains corrosion fatigue of tubing of heat exchangers caused by aggressive environment and cyclic stress. It also discusses the effects of design, welding practices, and elevated temperatures on the failures of heat exchangers.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001837
EISBN: 978-1-62708-241-9
... after a circumferential welding process. The nozzle assembly was made from low-carbon CrMoV alloy steel that was subsequently single-pass butt welded using gas tungsten arc welding. Although no cracks were found when the welds were visually inspected, X-ray radiography showed small discontinuous surface...
Abstract
This case study describes the failure analysis of a steel nozzle in which cracking was observed after a circumferential welding process. The nozzle assembly was made from low-carbon CrMoV alloy steel that was subsequently single-pass butt welded using gas tungsten arc welding. Although no cracks were found when the welds were visually inspected, X-ray radiography showed small discontinuous surface cracks adjacent to the weld bead in the heat affected zone. Further investigation, including optical microscopy, microhardness testing, and residual stress measurements, revealed that the cracks were caused primarily by the presence of coarse untempered martensite in the heat affected zone due to localized heating. The localized heating was caused by high welding heat input or low welding speed and resulted in high transformation stresses. These transformation stresses, working in combination with thermal stresses and constraint conditions, resulted in intergranular brittle fracture.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001702
EISBN: 978-1-62708-219-8
... of the concrete exhibited the yellow-green fluorescence distinctive of ASR products. Thin sections were prepared for aggregate study and examined by polarized-light microscopy and scanning-electron microscopy with energy-dispersive and wavelength-dispersive x-ray analysis. Each thin section was examined...
Abstract
The Rocky Point Viaduct, located near Port Orford, OR, was replaced after only 40 years of service. A beam from the original viaduct was studied in detail to determine the mechanisms contributing to severe corrosion damage to the structure. Results are presented from the delamination survey, potential and corrosion mapping, concrete chemistry, and concrete physical properties. The major cause of corrosion damage appears to have been the presence of both pre-existing and environmentally-delivered chlorides in the concrete.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006813
EISBN: 978-1-62708-329-4
...- or energy-dispersive x-ray spectrometers for identification of compounds, which in turn may identify corrosives. These techniques are often used to analyze for the presence of contaminants on crack surfaces or at the roots of pits. Alloy confirmation is quite useful and definitive with a chemical analysis...
Abstract
Heat exchangers are devices used to transfer thermal energy between two or more fluids, between a solid surface and a fluid, or between a solid particulate and a fluid at different temperatures. This article first addresses the causes of failures in heat exchangers. It then provides a description of heat-transfer surface area, discussing the design of the tubular heat exchanger. Next, the article discusses the processes involved in the examination of failed parts. Finally, it describes the most important types of corrosion, including uniform, galvanic, pitting, stress, and erosion corrosion.