1-20 of 56 Search Results for

Wings (aircraft)

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006406
EISBN: 978-1-62708-217-4
... Abstract A crack was found in an aircraft main wing spar flange fabricated from 7079-T6 aluminum alloy during a routine nondestructive x-ray inspection after the craft had logged 300 h. Scanning electron microscopy (SEM) revealed an intergranular fracture pattern indicative of stress-corrosion...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0092142
EISBN: 978-1-62708-217-4
... Abstract During a routine inspection on an aircraft assembly line, an airframe attachment bolt was found to be broken. The bolt was one of 12 that attach the lower outboard longeron to the wing carry-through structure. Failure occurred on the right-hand forward bolt in this longeron splice...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006421
EISBN: 978-1-62708-217-4
... Abstract Cracks were found on the wing leading edge of a test aircraft made from AZ31B magnesium alloy. Crack lengths were approximately 230 mm (9 in.) long on the left side and approximately 130 mm (5 in.) long on the right side. The cracks ran parallel to the leading edge. The 230-mm (9...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006402
EISBN: 978-1-62708-217-4
... Abstract New aircraft wing panels extruded from 7075-T6 aluminum exhibited an unusual pattern of circular black interrupted lines, which could not be removed by scouring or light sanding. The panels, subsequent to profiling and machining, were required to be penetrated inspected, shot peened...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001021
EISBN: 978-1-62708-214-3
... Abstract Following the crash of a Mirage III-0 aircraft (apparently caused by engine failure), a small crack was detected in a bolt hole in the wing main spar (AU4SG aluminum alloy). Because this area was considered to be critical to aircraft safety and similar cracking was found in other spars...
Image
Published: 01 January 2002
Fig. 4 Fatigue cracking in an aircraft wing fitting for the F-111 Aircraft 94 that crashed in 1969. (a) and (b) Location of the left wing-pivot box fitting. The 22 mm (0.91 in.) material defect was not observed during inspection, and a fatigue crack initiated and grew for only about 0.38 mm More
Image
Published: 30 August 2021
Fig. 4 Fatigue cracking in an aircraft wing fitting for the F-111 aircraft 94 that crashed in 1969. (a) and (b) Location of the left wing pivot box fitting. The 23 mm (0.91 in.) material defect was not observed during inspection, and a fatigue crack initiated and grew for only approximately More
Image
Published: 01 January 2002
Fig. 10 4140 steel slat track from a military aircraft wing. The track bent because one end did not become fully austenitic during heat treatment, producing a low-strength structure of ferrite and tempered martensite. More
Image
Published: 01 January 2002
Fig. 12 Cadmium-plated 8740 steel aircraft-wing assembly nut that failed by hydrogen embrittlement. The nut was not baked after electroplating to release hydrogen. (a) Overall view. 5×. (b) Fracture surface. 9×. (c) Scanning electron micrograph of typical intergranular fracture shown in box More
Image
Published: 01 June 2019
Fig. 1 Cracked type 440C stainless steel (a) aircraft wing flap hinge bearings. (b) Crack configuration of bearing 1 from (a). (c) Crack configuration of bearing 2 from (a). (d) Fracture surface of second crack in bearing 1. Arrow shows the probable fracture origin. 2.5x. (e) Fracture surface More
Image
Published: 01 June 2019
Fig. 1 4140 steel slat track from a military aircraft wing. The track bent because one end did not become fully austenitic during heat treatment, producing a low-strength structure of ferrite and tempered martensite. More
Image
Published: 01 June 2019
Fig. 1 Aluminum alloy 7075-T6 aircraft wing panel (a) showing unusual surface appearance. (b) SEM of the panel surface showing cracked anodized coating. 160x. (c) SEM showing the anodized coating flaking away and corrosion deposit under the coating. 85x. (d) Cross section of corrosion site More
Image
Published: 01 June 2019
Fig. 1 Aluminum alloy 7079-T6 aircraft wing spar (a) showing crack (arrow). (b) Fracture surfaces of opened spar crack. Note clamshell marks at termination of the crack (left). Suspected multiple initiation sites are located between arrows. 1.5x. (c) Section of flange with surface at right More
Image
Published: 01 June 2019
Fig. 1 Overall view (a) of cracked magnesium alloy AZ31B aircraft wing leading edge panel. Arrows show the length of the crack. (b) Other side of panel shown in (a). A denotes the primary crack; B shows a second, smaller crack. (c) Close-up of fastener holes through which the crack progressed More
Image
Published: 01 June 2019
Fig. 1 Cadmium-plated 8740 steel aircraft wing clamp that failed because of burning during forging. (a) View of assembled clamp and detail showing locations of fractures. Dimensions given in inches. (b) Fracture surfaces showing brittle, intergranular nature of fracture. Approximately 2×. (c More
Image
Published: 15 January 2021
Fig. 10 4140 steel slat track from a military aircraft wing. The track bent because one end did not become fully austenitic during heat treatment, producing a low-strength structure of ferrite and tempered martensite. More
Image
Published: 30 August 2021
Fig. 12 Cadmium-plated 8740 steel aircraft-wing assembly nut that failed by hydrogen embrittlement. The nut was not baked after electroplating to release hydrogen. (a) Overall view. Original magnification: 5×. (b) Fracture surface. Original magnification: 9×. (c) Scanning electron micrograph More
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001026
EISBN: 978-1-62708-214-3
... Abstract Cracks were discovered in the cast 17-4 PH stainless steel outboard leading edge flap support of an aircraft wing during overhaul inspection. Failure analysis focused on an apparently intergranular area of fracture surface. It was determined that the original mode of crack growth...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001552
EISBN: 978-1-62708-217-4
... generation which induced grinding cracks and grinding burn. Tensional stresses resulting from grinding developed in a thin surface layer. On another crankshaft, chromium plating introduced undesirable residual tensile stresses. Such plating is an unsatisfactory finish for crankshafts of aircraft engines...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091809
EISBN: 978-1-62708-217-4
... Abstract Aluminum 7075 aircraft wing tanks failed in the 1950s. Investigation (visual inspection, biological analysis, and chemical analysis) supported the conclusion that MIC was the cause of the failures. Water condensed into the fuel tanks during flight led to microbial growth on the jet...