Skip Nav Destination
Close Modal
Search Results for
Weldments
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 149 Search Results for
Weldments
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0091594
EISBN: 978-1-62708-228-0
... amine service if the temperature is expected to be above 95 deg C (200 deg F). Recommendations included inspecting all welds using shear wave ultrasonic testing and postweld heat treating all welds in lean amine service. Piping Refineries Sulfur recovery units Weldments Welded carbon steel...
Abstract
Two leaks were discovered at a sulfur recovery unit in a refinery. The leaks were at pipe-to-elbow welds in a 152 mm (6 in.) (NPS 6) diam line, operating in lean amine service at 50 deg C (120 deg F) and 2.9 MPa (425 psig). Thickness measurements indicated negligible loss of metal, and the leaks were clamped. A year later, 15 additional leaks were discovered, again at pipe-to-elbow welds in lean amine lines. Further nondestructive testing located other cracks, giving a total of 35. These lines had been in service for approximately eight years. Investigation (visual inspection, hardness testing, and micrographic cross-sections) supported the conclusion that the failure was caused by lean amine SCC. It was considered unlikely that these pipe welds had received such a postweld heat treatment, although it is industry practice to postweld stress relieve piping and pressure vessels in lean amine service if the temperature is expected to be above 95 deg C (200 deg F). Recommendations included inspecting all welds using shear wave ultrasonic testing and postweld heat treating all welds in lean amine service.
Image
Published: 01 January 2002
Fig. 12 MIC of stainless steel weldments. (a) MIC showing a surface view of interdendritic attack at the fusion line of a stainless steel weldment. “A,” nondentritite; “D,” dendrite. (b) Cross section of MIC at a stainless steel weldment showing extensive corrosion of weld metal and fusion
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001514
EISBN: 978-1-62708-218-1
... of the injuries sustained by the driver. The faulty welds in the unit body were apparently a consequence of improper settings of parameters on a multihead electrical resistance spot welding machine. Lack of appreciation of the hazard associated with failure of this weldment may have contributed to the low...
Abstract
A front-wheel drive hatchback automobile was involved in a severe front end impact. Failure analysis of the automobile revealed only a single sound spot weld in each of two 66 cm (26 in.) sections of both upper and lower floor sill flanges. Consequently, upon impact, the floor pan separated from the rocker panel, buckled and rotated upward and forward. This introduced slack in the seat belts since their retractors, being anchored to the floor pan, also rotated forward. Although not contributory to the accident itself, the faulty welds were responsible in part for the severity of the injuries sustained by the driver. The faulty welds in the unit body were apparently a consequence of improper settings of parameters on a multihead electrical resistance spot welding machine. Lack of appreciation of the hazard associated with failure of this weldment may have contributed to the low frequency of their physical inspection during production. A similar case involving faulty welds in a fuel delivery truck is also discussed.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001837
EISBN: 978-1-62708-241-9
.... Transverse face and capping face both were grinded up to 400 grit size and etched in 2% nital to reveal different regions of the weldment. Special care was taken to avoid excessive heating of required surface during grinding. Figure 6 shows the macrograph of the transverse face after etching. Note...
Abstract
This case study describes the failure analysis of a steel nozzle in which cracking was observed after a circumferential welding process. The nozzle assembly was made from low-carbon CrMoV alloy steel that was subsequently single-pass butt welded using gas tungsten arc welding. Although no cracks were found when the welds were visually inspected, X-ray radiography showed small discontinuous surface cracks adjacent to the weld bead in the heat affected zone. Further investigation, including optical microscopy, microhardness testing, and residual stress measurements, revealed that the cracks were caused primarily by the presence of coarse untempered martensite in the heat affected zone due to localized heating. The localized heating was caused by high welding heat input or low welding speed and resulted in high transformation stresses. These transformation stresses, working in combination with thermal stresses and constraint conditions, resulted in intergranular brittle fracture.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048767
EISBN: 978-1-62708-235-8
... the weldment may have been stress relieved as specified, stress-relief annealing was apparently incapable of reducing the high hardness of the localized bands caused by alloy mixing. Chemical analysis of the plating material showed it to be nickel, probably electroless nickel because it had a high hardness...
Abstract
The clapper in a 250 mm diam disk valve (made from ASTM A36 steel, stress relieved and cadmium plated) fractured at the welded joint between the clapper and a 20 mm diam support rod (also made of same material). The valve contained a stream of gas consisting of 55% H2S, 39% CO2, 5% H2, and 1% hydrocarbons at 40 deg C and 55 kPa during operation. Voids on the fracture surface and evidence of incomplete weld penetration were revealed by examination. Brittle fracture was indicated by the overall appearance through some fatigue beach marks were observed. Very narrow bands of high hardness were revealed at the edges of the weld metal. It was revealed by chemical analysis of this band that a stainless steel filler metal had been used which produced mixed composition at the weld boundaries. The plating material was revealed to be nickel by chemical analysis. It was concluded that clapper failed by fatigue and brittle fracture because it was welded with an incorrect filler metal. A clapper assembly was welded with a low-carbon steel filler metal, then cadmium plated.
Image
Published: 01 January 2002
Fig. 26 Pulsed GMAW spot weld showing porosity in dissimilar metal weldment; a copper-nickel alloy to a carbon-manganese steel using an ERNiCu-7 (Monel 60) electrode. Etchant, 50% nitric-50% acetic acid. 4×
More
Image
in Failures of Pressure Vessels and Process Piping
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 39 Reducer-elbow pipe weldment
More
Image
Published: 01 December 1993
Fig. 2 Specimen taken from a failed tube weldment. Enlarged views of the outer and inner surfaces are shown.
More
Image
Published: 01 December 1993
Fig. 3 Macroscopic view of a deep etched longitudinal section of the weldment.
More
Image
Published: 01 December 1993
Fig. 5 Hardness profile across the weldment on the inner surface of the tank. (a) and on the outer surface (b)
More
Image
in Failure of a Martensitic Stainless Steel Ball Valve
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 8 Crack in the weldment
More
Image
in Failure of a Martensitic Stainless Steel Ball Valve
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 9 Crack starting from weldment and extending into base metal
More
Image
in Failure Analysis of an Automobile Weldment
> ASM Failure Analysis Case Histories: Automobiles and Trucks
Published: 01 June 2019
Fig. 8 The single weld nugget of the 66cm (26″) section of weldment cut from the rocker panel
More
Image
in Failure Analysis of an Automobile Weldment
> ASM Failure Analysis Case Histories: Automobiles and Trucks
Published: 01 June 2019
Fig. 10 Fuel tank anchor weldment partially separated at the fillet welds
More
Image
in Brittle Fracture of a Roadarm Weldment of Two Steel Castings Because of Excessive Carbon-Equivalent Content
> ASM Failure Analysis Case Histories: Construction, Mining, and Agricultural Equipment
Published: 01 June 2019
Fig. 1 Section through weld in a roadarm (a weldment of low-alloy steel castings). The roadarm fractured in the HAZ because of high carbon-equivalent content. Fracture surface is at arrow. 0.8×
More
Image
in Plating Blemishes in Zinc Die Castings
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 3 Detail of shrinkage porosity in steel weldment. Note that the secondary dendrite arms are spaced at 90° in this cubic crystal structure material, unlike snowflakes formed from water, which prefer a hexagonal crystal habit.
More
1