Skip Nav Destination
Close Modal
Search Results for
Welded low-carbon steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 275 Search Results for
Welded low-carbon steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001525
EISBN: 978-1-62708-220-4
... Abstract Welded steel storage vessels used to hold mildly alkaline solution were produced in exactly the same manner from deep-drawn aluminum-killed SAE 1006 low-carbon steel sheet. After the cylindrical shell was drawn, a top low-carbon steel closure was welded to the inside diameter...
Abstract
Welded steel storage vessels used to hold mildly alkaline solution were produced in exactly the same manner from deep-drawn aluminum-killed SAE 1006 low-carbon steel sheet. After the cylindrical shell was drawn, a top low-carbon steel closure was welded to the inside diameter. The containers were then filled with the slightly alkaline solution, pressurized, and allowed to stand under ambient conditions. A small number, less than 1%, were returned because they began to leak in service. Inspection revealed general corrosion and pitting on the inner surfaces. However, other tanks that experienced the same service conditions developed no corrosion. Corrosion was linked to forming defects that provided sites for localized corrosion, and to lack of steam drying after cleaning, which increased susceptibility to general corrosion.
Image
in Failure Analysis of Welded Low-Carbon Steel Storage Tank
> ASM Failure Analysis Case Histories: Chemical Processing Equipment
Published: 01 June 2019
Fig. 1 The inside surface of the welded low-carbon steel storage tank shows evidence of general corrosion with severe discoloration at the weld.
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001909
EISBN: 978-1-62708-235-8
... Abstract Welded low-carbon steel bomb fins were rejected because of poor weld practice. Visual and metallographic examination revealed that the resistance plug welds that attach the outer skin to the inner spar displayed inadequate weld penetration. Recommended changes to the resistance welding...
Abstract
Welded low-carbon steel bomb fins were rejected because of poor weld practice. Visual and metallographic examination revealed that the resistance plug welds that attach the outer skin to the inner spar displayed inadequate weld penetration. Recommended changes to the resistance welding parameters resulted in acceptable welds.
Image
Published: 01 January 2002
Fig. 30 Lamellar tear beneath a T-joint weld that joined two low-carbon steel plates. (a) Fractograph of lamellar tear showing separation that has followed flattened inclusions. Approximately 0.3×. (b) Section through fracture (top), which occurred in the coarse-grain reaustenitized region
More
Image
Published: 01 January 2002
Fig. 58 Gas porosity in electron beam welds of low-carbon steel and titanium alloy. (a) Gas porosity in a weld in rimmed AISI 1010 steel. Etched with 5% nital. 30×. (b) Massive voids in weld centerline of 50 mm (2 in.) thick titanium alloy Ti-6Al-4V. 1.2×
More
Image
Published: 30 August 2021
Fig. 47 Low-alloy steel conveyor pipe that cracked at fillet weld securing a carbon steel flange because of poor fit-up. Dimensions given in inches
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047566
EISBN: 978-1-62708-235-8
... Abstract Handles welded to the top cover plate of a chemical-plant downcomer broke at the welds when the handles were used to lift the cover. The handles were fabricated of low-carbon steel rod; the cover was of type 502 stainless steel plate. The attachment welds were made with type 347...
Abstract
Handles welded to the top cover plate of a chemical-plant downcomer broke at the welds when the handles were used to lift the cover. The handles were fabricated of low-carbon steel rod; the cover was of type 502 stainless steel plate. The attachment welds were made with type 347 stainless steel filler metal to form a fillet between the handle and the cover. The structure was found to contain a zone of brittle martensite in the portion of the weld adjacent to the low-carbon steel handle; fracture had occurred in this zone. The brittle martensite layer in the weld was the result of using too large a welding rod and too much heat input, melting of the low-carbon steel handle, which diluted the austenitic stainless steel filler metal and formed martensitic steel in the weld zone. Because it was impractical to preheat and postheat the type 502 stainless steel cover plate, the low-carbon steel handle was welded to low-carbon steel plate, using low-carbon steel electrodes. This plate was then welded to the type 502 stainless steel plate with type 310 stainless steel electrodes. This design produced a large weld section over which the load was distributed.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001065
EISBN: 978-1-62708-214-3
.... Metallography Microstructural Analysis Figures 5(a) to (d) . depicting both base metals, the weld heat-affected zone (HAZ), and the weld metal, show that the microstructures were consistent with those of a welded low-carbon steel. Fig. 5 Microstructures of the pipe, elbow, HAZ, and weld...
Abstract
A 460 mm (18 in.) diam suction line to the main feed water pump for a nuclear power plant failed in a violent, catastrophic manner. Samples of pipe, elbow, and weld materials (ASTM A106 grade B carbon steel, ASTM A234 grade WPB carbon steel, and E7018 carbon steel electrode, respectively) from the suction line were analyzed. Evidence of overall thinning of the elbow and pipe material and ductile tearing of fractures indicated that the feed water pipe failed as a result of an erosion corrosion mechanism, which thinned the wall sufficiently to cause rapid, ductile tearing of the material after its design stress had been exceeded. It was recommended that steel with a higher chromium content be used to mitigate the erosion corrosion potential in the lines and that more rigorous nondestructive (ultrasonic) examinations be performed.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001400
EISBN: 978-1-62708-235-8
... relieving Welded joints Welded low-carbon steel Stress-corrosion cracking Intergranular fracture Introduction Following the discovery of discovery of numerous cracks at many of the welded seams of this vessel a sample for examination was removed from the worst affected area where repairs had...
Abstract
Following the discovery numerous cracks at many of the welded seams of a mild steel CO2 absorber vessel, a sample for examination was removed from the worst affected area where repairs had been effected. A 12 in. long circumferential crack was visible. Specimens were taken to cover the several locations of cracking which, in all cases, were found to be similar and of the intergranular type filled with oxide or corrosion product. The association of the cracks with the weld seams indicated that contraction stresses from welding were primarily responsible. Failure of the absorber vessel was found to be due to stress corrosion. Although the active agent present was not positively identified, the aqueous solution of monoethanolamine was thought to be the most probable. The origin of the stresses was not elucidated but the association of the cracks with the welded seams indicated inherent residual stresses as being primarily responsible. Tests carried out tend to suggest that stress relief was not carried out. For the replacement plant, consideration of stress relieving or the use of an alternative material was advised.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047392
EISBN: 978-1-62708-221-1
... Abstract A roadarm for a tracked vehicle failed during preproduction vehicle testing. The arm was a weldment of two cored low-alloy steel sand castings specified to ASTM A 148, grade 120–95. A maximum carbon content of 0.32% was specified. The welding procedure called for degreasing and gas...
Abstract
A roadarm for a tracked vehicle failed during preproduction vehicle testing. The arm was a weldment of two cored low-alloy steel sand castings specified to ASTM A 148, grade 120–95. A maximum carbon content of 0.32% was specified. The welding procedure called for degreasing and gas metal arc welding; neither preheating nor postheating was specified. The filler metal was E70S-6 continuous consumable wire with a copper coating to protect it from atmospheric oxidation while on the reel. Analysis of the two castings revealed that the carbon content was higher than specified, ranging from 0.40 to 0.44%. The fracture occurred in the HAZ , where quenching by the surrounding metal had produced a hardness of 55 HRC. Some roadarms of similar carbon content and welded by the same procedure had not failed because they had been tempered during a hot-straightening operation. Brittle fracture of the roadarm was caused by a combination of too high a carbon equivalent in the castings and the lack of preheating and postheating during the welding procedure. A pre-heat and tempering after welding were added to the welding procedure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001207
EISBN: 978-1-62708-235-8
... Abstract Pipes made of low-carbon Thomas steel had been welded longitudinally employing the carbon-arc process with bare electrode wire made for argon-shielded arc welding. Difficulties were encountered during the cutting of threads because of the presence of hard spots. Microstructural...
Abstract
Pipes made of low-carbon Thomas steel had been welded longitudinally employing the carbon-arc process with bare electrode wire made for argon-shielded arc welding. Difficulties were encountered during the cutting of threads because of the presence of hard spots. Microstructural examination showed welding conditions were such that a carburizing atmosphere developed, which led to an increase in carbon content and hardening at certain locations such as terminal bells and lap joints. This explained the processing difficulties during the threading operation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001223
EISBN: 978-1-62708-233-4
... been applied. Microscopic examination showed grain disintegration was promoted by the thickness of the weld bead and the amount of heat required to produce it. If nonstabilized austenitic sheet is to be used in the future, one of the particularly low-carbon steels, X2 CrNi 18 9 or X2 CrNiMo 18 10...
Abstract
The corner of a welded sheet construction made from austenitic corrosion-resistant chromium-nickel steel showed corrosive attack of the outer sheet. This attack was most severe at the points subjected to the greatest heat during welding. Particularly large amounts of weld metal had been applied. Microscopic examination showed grain disintegration was promoted by the thickness of the weld bead and the amount of heat required to produce it. If nonstabilized austenitic sheet is to be used in the future, one of the particularly low-carbon steels, X2 CrNi 18 9 or X2 CrNiMo 18 10, is recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047508
EISBN: 978-1-62708-221-1
... Abstract A riveted 0.25% carbon steel oil-storage tank in Oklahoma was dismantled and reassembled in Minnesota by welding to form a storage tank for soybean oil. An opening was cut in the side of the tank to admit a front-end loader. A frame of heavy angle iron was welded to the tank...
Abstract
A riveted 0.25% carbon steel oil-storage tank in Oklahoma was dismantled and reassembled in Minnesota by welding to form a storage tank for soybean oil. An opening was cut in the side of the tank to admit a front-end loader. A frame of heavy angle iron was welded to the tank and drilled for bolting on a heavy steel plate. The tank was filled to a record height. In mid-Jan the temperature dropped to -31 deg C (-23 deg F), with high winds. The tank split open and collapsed. The welding used the shielded metal arc process with E6010 electrodes, which could lead to weld porosity, hydrogen embrittlement, or both. At subzero temperatures, the steel was below its ductile-to-brittle transition temperature. These circumstances suggest a brittle condition. Steps to avoid this type of failure: For cold conditions, the steel plate should have a low carbon content and a high manganese-to-sulfur ratio and be in a normalized condition, low-hydrogen electrodes and welding practices should be used, all corners should be generously radiused, the welds should be inspected and ground or dressed to minimize stress concentrations, postweld heating is advisable, and radiographic and penetrant inspection tests should be performed.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001088
EISBN: 978-1-62708-214-3
... and that a low-carbon steel welding procedure had been used. This resulted in incipient cracks in the stainless steel weld metal near the toes of the component-to-shaft welds. The hardnesses of the heat-affected zones were as high as 58 HRC, and they were grain coarsened. The parting of the shaft was determined...
Abstract
A 25 mm (1 in.) diam carrier shaft failed suddenly during operation. The shaft failed near the toe of the 4.8 mm (316 in.) frame-to-shaft 60 deg and 120 deg submerged metal arc (SMA) tack welds after an unknown time in service. Material specifications called for the shaft to be made from SAE 1018 cold-rolled carbon steel. Carrier assembly components were made from type 300 stainless steel, and all nuts, spacers, and washers were to be SMA tack welded to the stainless steel frame. Chemical analyses (OES, SEM/EDS) showed the shaft to actually be made from SAE 1050 high-carbon steel and that a low-carbon steel welding procedure had been used. This resulted in incipient cracks in the stainless steel weld metal near the toes of the component-to-shaft welds. The hardnesses of the heat-affected zones were as high as 58 HRC, and they were grain coarsened. The parting of the shaft was determined to have been caused by an impact failure mechanism, with the origin at the incipient cracks in the weld metal. Additionally, the coarsened heat-affected zones were found to be hydrogen embrittled. The primary cause of the failure was the use of an unspecified material.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0089766
EISBN: 978-1-62708-224-2
... of low-carbon low-alloy steel that was welded to an AISI 1025 steel tube, and the improved design included placing the welded joint of the flange farther away from the flange fillet. Investigation (visual inspection and chemical analysis) supported the conclusion that the failures in the flanges...
Abstract
Two tubular AISI 1025 steel posts (improved design) in a carrier vehicle failed by cracking at the radius of the flange after five weeks of service. The posts were two of four that supported the chassis of the vehicle high above the wheels. The original design involved a flat flange of low-carbon low-alloy steel that was welded to an AISI 1025 steel tube, and the improved design included placing the welded joint of the flange farther away from the flange fillet. Investigation (visual inspection and chemical analysis) supported the conclusion that the failures in the flanges of improved design were attributed to fatigue cracks initiating at the aluminum oxide inclusions in the flange fillet. Recommendations included retaining the improved design of the flange with the weld approximately 50 mm (2 in.) from the fillet, but changing the metal to a forging of AISI 4140 steel, oil quenched and tempered to a hardness of 241 to 285 HRB. Preheating to 370 deg C (700 deg F) before and during welding with AISI 4130 steel wire was specified. It was also recommended that the weld be subjected to magnetic-particle inspection and then stress relieved at 595 deg C (1100 deg F), followed by final machining.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001257
EISBN: 978-1-62708-235-8
... of a low-carbon steel in which the zone heated during welding was delineated only slightly next to the seam, the other pipe was etched much darker, i.e., higher in carbon, and the heated zone appeared to stand out darkly against the basic material. The overlapping weld was defect-free and dense...
Abstract
A steel socket pipe conduit NW 150 cracked open during pressure testing next to the weld seam almost along the entire circumference. The crack occurred in part in the penetration notch and in part immediately adjacent to it. While the uncracked pipe showed the light etch shading of a low-carbon steel in which the zone heated during welding was delineated only slightly next to the seam, the other pipe was etched much darker, i.e., higher in carbon, and the heated zone appeared to stand out darkly against the basic material. The overlapping weld was defect-free and dense. The uncracked pipe consisted of soft steel that obviously was made for this purpose, while the cracked pipe consisted of a strongly-hardenable steel which contained not only more carbon and manganese than customary but also a considerable amount of chromium. Therefore, the damage was caused by a mix-up of materials that allowed an unsuitable steel to be used for the weldment.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0048819
EISBN: 978-1-62708-233-4
... of ASTM A516, grade 70, low-carbon steel plate. A steel angle had been formed into a ring was continuously welded to the inside wall of the vessel. The groove formed by the junction of the lower tray-support weld and the top part of the weld around the nozzle was found to have a crack. Pits and scale near...
Abstract
A large pressure vessel that had been in service as a hydrogen sulfide (H2S) absorber developed cracks and began leaking at a nozzle. The vessel contained a 20% aqueous solution of potassium hydroxide (KOH), potassium carbonate (K2CO3), and arsenic. The vessel wall was manufactured of ASTM A516, grade 70, low-carbon steel plate. A steel angle had been formed into a ring was continuously welded to the inside wall of the vessel. The groove formed by the junction of the lower tray-support weld and the top part of the weld around the nozzle was found to have a crack. Pits and scale near the crack origin were revealed by microscopic examination and cracking was found to be transgranular. Periods of corrosion alternated with sudden instances of cleavage, under a tensile load, along preferred slip planes were interpreted during examination with a microscope. It was concluded that the combination of the residual plus operating stresses and the amount of KOH present would have caused stress corrosion as a result of caustic embrittlement. It was recommended that the tray support should be installed higher on the vessel wall to prevent coincidence of the lower tray-support weld with the nozzle weld.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001061
EISBN: 978-1-62708-214-3
... Abstract Schedule 80 low-carbon steel pipes used to transfer kraft liquor in a Kamyr continuous pulp digester failed within 18 months after installation. Visual and metallographic examinations established that the cracking initiated on the internal surfaces of the equalizer pipes in the welds...
Abstract
Schedule 80 low-carbon steel pipes used to transfer kraft liquor in a Kamyr continuous pulp digester failed within 18 months after installation. Visual and metallographic examinations established that the cracking initiated on the internal surfaces of the equalizer pipes in the welds and heat-affected zones (HAZs). Fracture/crack morphology was brittle and primarily intergranular and deposits at crack tips were primarily iron oxides with significant amounts of sodium compounds. On these bases, the cracking was characterized as intergranular stress-corrosion cracking (IGSCC). Corrosion-related deterioration was not found, indicating that the material was generally suitable for the intended service. High residual tensile stresses in the welds and HAZS, resulting from field welding under highly constrained conditions using inadequate weld procedures, were the most probable cause of the failures. Minimizing residual stresses through use of welding procedures that include appropriate preweld and interpass temperatures and postweld stress relief heat treatment at 650 deg C (1200 deg F) was recommended to prevent further failures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c0089716
EISBN: 978-1-62708-231-0
... identified but were generally classified as semi-killed carbon steels. Investigation (visual inspection, hardness testing, chemical analysis, Charpy V-notch testing, and drop-weight testing) supported the conclusions that the fracture was initiated by weld imperfections and propagated in a brittle manner...
Abstract
A railway tank car developed a fracture in the region of the sill and shell attachment during operation at -34 deg C (-30 deg F). On either side of the sill-support member, cracking initiated at the weld between a 6.4 mm thick frontal cover plate and a 1.6 mm thick side support plate. The crack then propagated in a brittle manner upward through the side plate, through the welds attaching the side plate to a 25 mm (1 in.) thick shell plate (ASTM A212, grade B steel), and continued for several millimeters in the shell plate before terminating. Other plates involved were not positively identified but were generally classified as semi-killed carbon steels. Investigation (visual inspection, hardness testing, chemical analysis, Charpy V-notch testing, and drop-weight testing) supported the conclusions that the fracture was initiated by weld imperfections and propagated in a brittle manner as a result of service stresses acting on the plate having low toughness at the low service temperatures encountered. Recommendations included that the specifications for the steel plates be modified to include a toughness requirement and that improved welding and inspection practices be performed to reduce the incidence of weld imperfections.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001837
EISBN: 978-1-62708-241-9
... Abstract This case study describes the failure analysis of a steel nozzle in which cracking was observed after a circumferential welding process. The nozzle assembly was made from low-carbon CrMoV alloy steel that was subsequently single-pass butt welded using gas tungsten arc welding. Although...
Abstract
This case study describes the failure analysis of a steel nozzle in which cracking was observed after a circumferential welding process. The nozzle assembly was made from low-carbon CrMoV alloy steel that was subsequently single-pass butt welded using gas tungsten arc welding. Although no cracks were found when the welds were visually inspected, X-ray radiography showed small discontinuous surface cracks adjacent to the weld bead in the heat affected zone. Further investigation, including optical microscopy, microhardness testing, and residual stress measurements, revealed that the cracks were caused primarily by the presence of coarse untempered martensite in the heat affected zone due to localized heating. The localized heating was caused by high welding heat input or low welding speed and resulted in high transformation stresses. These transformation stresses, working in combination with thermal stresses and constraint conditions, resulted in intergranular brittle fracture.
1