1-20 of 358 Search Results for

Welded carbon steel

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048356
EISBN: 978-1-62708-229-7
... Abstract Welded to the top of a dust bin for rigid support, a furnace water-wall tube in a new stationary boiler broke at the welded joint shortly after start-up. The tubes measured 64 mm (2.5 in.) OD by 3.2 mm (0.125 in.) wall thickness and were made of carbon steel to ASME SA-226...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001525
EISBN: 978-1-62708-220-4
... Abstract Welded steel storage vessels used to hold mildly alkaline solution were produced in exactly the same manner from deep-drawn aluminum-killed SAE 1006 low-carbon steel sheet. After the cylindrical shell was drawn, a top low-carbon steel closure was welded to the inside diameter...
Image
Published: 01 June 2019
Fig. 1 The inside surface of the welded low-carbon steel storage tank shows evidence of general corrosion with severe discoloration at the weld. More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048318
EISBN: 978-1-62708-234-1
... Abstract A resistance-welded carbon steel superheater tube made to ASME SA-276 specifications failed by pitting corrosion and subsequent perforation, which caused the tube to leak. The perforation was found to have occurred at a low point in a bend near the superheater outlet header...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001909
EISBN: 978-1-62708-235-8
... Abstract Welded low-carbon steel bomb fins were rejected because of poor weld practice. Visual and metallographic examination revealed that the resistance plug welds that attach the outer skin to the inner spar displayed inadequate weld penetration. Recommended changes to the resistance welding...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048808
EISBN: 978-1-62708-228-0
... Abstract The welds joining the liner and shell of a fluid catalytic cracking unit failed. The shell was made of ASTM A515 carbon steel welded with E7018 filler metal. The liner was made of type 405 stainless steel and was plug welded to the shell using ER309 and ER310 stainless steel filler...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047566
EISBN: 978-1-62708-235-8
... Abstract Handles welded to the top cover plate of a chemical-plant downcomer broke at the welds when the handles were used to lift the cover. The handles were fabricated of low-carbon steel rod; the cover was of type 502 stainless steel plate. The attachment welds were made with type 347...
Image
Published: 01 June 2019
Fig. 1 Duct assembly of medium-carbon steels in which welded bellows liners of type 321 stainless steel fractured in fatigue. (a) Configuration and dimensions (given in inches). (b) Light fractograph showing fracture origin (top edge). 30x More
Image
Published: 01 January 2002
Fig. 16 Duct assembly of medium-carbon steels in which welded bellows liners of type 321 stainless steel fractured in fatigue. (a) Configuration and dimensions (given in inches). (b) Light fractograph showing fracture origin (top edge). 30× More
Image
Published: 01 January 2002
Fig. 30 Lamellar tear beneath a T-joint weld that joined two low-carbon steel plates. (a) Fractograph of lamellar tear showing separation that has followed flattened inclusions. Approximately 0.3×. (b) Section through fracture (top), which occurred in the coarse-grain reaustenitized region More
Image
Published: 01 January 2002
Fig. 58 Gas porosity in electron beam welds of low-carbon steel and titanium alloy. (a) Gas porosity in a weld in rimmed AISI 1010 steel. Etched with 5% nital. 30×. (b) Massive voids in weld centerline of 50 mm (2 in.) thick titanium alloy Ti-6Al-4V. 1.2× More
Image
Published: 30 August 2021
Fig. 15 Crater crack in carbon steel fillet weld termination as revealed under wet fluorescent magnetic-particle testing More
Image
Published: 30 August 2021
Fig. 18 Micrograph of carbon steel weld metal microfissure. 2% nital etch. Original magnification: 215× More
Image
Published: 30 August 2021
Fig. 47 Low-alloy steel conveyor pipe that cracked at fillet weld securing a carbon steel flange because of poor fit-up. Dimensions given in inches More
Image
Published: 30 August 2021
Fig. 7 Effect of welding on the life of a carbon steel structure. (a) and (b) show the 46 cm (18 in.) long crack found in a carbon steel as-forged nozzle that was arc gouged. Failure occurred after five years in service during a cold start-up procedure. (c) Micrograph showing a hardened layer More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0091594
EISBN: 978-1-62708-228-0
... amine service if the temperature is expected to be above 95 deg C (200 deg F). Recommendations included inspecting all welds using shear wave ultrasonic testing and postweld heat treating all welds in lean amine service. Piping Refineries Sulfur recovery units Weldments Welded carbon steel...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001061
EISBN: 978-1-62708-214-3
... Abstract Schedule 80 low-carbon steel pipes used to transfer kraft liquor in a Kamyr continuous pulp digester failed within 18 months after installation. Visual and metallographic examinations established that the cracking initiated on the internal surfaces of the equalizer pipes in the welds...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047392
EISBN: 978-1-62708-221-1
... Abstract A roadarm for a tracked vehicle failed during preproduction vehicle testing. The arm was a weldment of two cored low-alloy steel sand castings specified to ASTM A 148, grade 120–95. A maximum carbon content of 0.32% was specified. The welding procedure called for degreasing and gas...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001223
EISBN: 978-1-62708-233-4
... been applied. Microscopic examination showed grain disintegration was promoted by the thickness of the weld bead and the amount of heat required to produce it. If nonstabilized austenitic sheet is to be used in the future, one of the particularly low-carbon steels, X2 CrNi 18 9 or X2 CrNiMo 18 10...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001088
EISBN: 978-1-62708-214-3
... from SAE 1018 cold-rolled carbon steel. Carrier assembly components were made from type 300 stainless steel, and all nuts, spacers, and washers were to be SMA tack welded to the stainless steel frame. Chemical analyses (OES, SEM/EDS) showed the shaft to actually be made from SAE 1050 high-carbon steel...