Skip Nav Destination
Close Modal
Search Results for
Weld deposited coatings
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 98 Search Results for
Weld deposited coatings
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047428
EISBN: 978-1-62708-235-8
... of the dragline bucket were warned against further hardfacing of these teeth. Hard surfacing Weld deposited coatings Steel casting Brittle fracture Surface treatment related failures A cast dragline bucket tooth failed by fracturing after a short time in service. The tooth was made of medium-carbon...
Abstract
A cast dragline bucket tooth failed by fracturing after a short time in service. The tooth was made of medium-carbon low-alloy steel heat treated to a hardness of 555 HRB. The fracture surface was covered with chevron marks. These converged at several sites on the surface of the tooth. A hardfacing deposit was located at each of these sites. Visual inspection of the hardfacing deposits revealed numerous transverse cracks, characteristic of many types of hardfacing. This failure was caused by cracks present in hardfacing deposits that had been applied to the ultrahigh-strength steel tooth. Given the small critical crack sizes characteristic of ultrahigh-strength materials, it is generally unwise to weld them. It is particularly inadvisable to hardface ultrahigh-strength steel parts with hard, brittle, crack-prone materials when high service stresses will be encountered. The operators of the dragline bucket were warned against further hardfacing of these teeth.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001435
EISBN: 978-1-62708-236-5
... inclusions Shafts (power) Slags Weld defects Weld deposited coatings Welded steel Joining-related failures Fatigue fracture The fracture of the shaft of a 10 h.p. squirrel-cage motor took place at the driving end just outside the roller bearing and not at an abrupt change of section behind...
Abstract
Shaft fracture of a 10 hp squirrel cage motor took place at the driving end just outside the roller bearing and not at an abrupt change of section behind the bearing where it might be expected to occur. A portion of shaft to the right of the fracture was deeply grooved. About a year prior to failure the inner race of the roller bearing became slack on the shaft and the seating was built up by the metal-spray process. The shaft was machined to form a rough thread to provide the requisite mechanical key for the sprayed-on metal. Part of this sprayed-on layer became detached after the fatigue failure occurred. The quality of the welding was poor. Slag inclusions were present adjacent to the sides of the keyway, which had been re-cut shorter than the original one after the welding repair. Failure at the unusual location was caused by the presence of the weld deposit.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047558
EISBN: 978-1-62708-236-5
... plate of the exciter should be braced to reduce the amount of transmitted vibration. Also, the fillet in the exciter shaft should be carefully machined to provide an adequate radius. Electric generators Fillet welds Stress concentration Vibration Weld deposited coatings 4130 UNS G41300...
Abstract
The shaft of an exciter that was used with a diesel-driven electric generator broke at a fillet after ten hours of service following resurfacing of the shaft by welding. The fracture surface contained a dull off-center region of final ductile fracture surrounded by regions of fatigue that had been subjected to appreciable rubbing. The fracture appeared to be typical of rotary bending fatigue under conditions of a low nominal stress with a severe stress concentration. It appeared that the fatigue cracks initiated in the surface-weld layer. The weld deposit in the original keyway displays a lack of fusion at the bottom corner. Fatigue fracture of the shaft resulted from stresses that were created by vibration acting on a crack or cracks formed in the weld deposit because of the lack of preheating and postheating. Rebuilding of exciter shafts should be discontinued, and the support plate of the exciter should be braced to reduce the amount of transmitted vibration. Also, the fillet in the exciter shaft should be carefully machined to provide an adequate radius.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001832
EISBN: 978-1-62708-241-9
... aggressive toward the zinc coating, thereby exposing base metal to the condensate. The results of the analyses of these deposits are discussed further in the following sections. Cracks were discovered perpendicular to the longitudinal seam weld and parallel to the circumferential welds. The cracks along...
Abstract
High-level radioactive wastes generated during the processing of nuclear materials are kept in large underground storage tanks made of low-carbon steel. The wastes consist primarily of concentrated solutions of sodium nitrate and sodium hydroxide. Each of the tanks is equipped with a purge ventilation system designed to continuously remove hydrogen gas and vapors without letting radionuclides escape. Several intergranular cracks were discovered in the vent pipe of one such system. The pipe, made of galvanized steel sheet, connects to an exhaust fan downstream of high-efficiency particulate air filters. The failure analysis investigation concluded that nitrate-induced stress-corrosion cracking was the cause of the failure.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001325
EISBN: 978-1-62708-215-0
... showed quite noticeable external lack of weld bead buildup at this location. The weld was visibly starved of filler metal at this location. The internal surfaces of the piping were found to be coated with columnar crystalline deposits up to approximately 6 mm (0.25 in.) thick, deposited in concentric...
Abstract
A carbon steel piping cross-tee assembly which conveyed hydrogen sulfide (H7S) process gas at 150 to 275 deg C (300 to 585 deg F) with a maximum allowable operating pressure of 3 MPa (450 psig) ruptured at the toe of one of the welds at the cross after several years of service. The failure was initially thought to be the result of thermal fatigue, and the internal surfaces exhibited the “elephant hide” pattern characteristic of thermal fatigue. However metallographic failure analysis found that this pattern was the result of corrosion rather than thermal fatigue. Corrosion caused failure at this location because the weld was abnormally thin as fabricated. Thus, failure resulted from inadequate deposition of weld metal and subsequent wall thinning from internal corrosion. It was recommended that the cross-tee be replaced with a like component, with more careful attention to weld quality.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047541
EISBN: 978-1-62708-217-4
... to the throttle-linkage bar by an assembly-weld deposit made on the rod adjacent to the threaded portion. The fracture surface exhibited a coarse-grain brittle texture with an initiating crack at a thread root. The throttle-arm failed by brittle fracture because of the presence of cracks at the thread roots...
Abstract
A throttle arm of an aircraft engine fractured and caused loss of engine control. The broken part consisted of a 6.4-mm (1/4-in.) diam medium-carbon steel rod with a thread to fit a knurled brass nut that was inserted into the throttle knob. The threaded rod had been welded to the throttle-linkage bar by an assembly-weld deposit made on the rod adjacent to the threaded portion. The fracture surface exhibited a coarse-grain brittle texture with an initiating crack at a thread root. The throttle-arm failed by brittle fracture because of the presence of cracks at the thread roots that were within the HAZ of the adjacent weld deposit. The heat of welding had generated a coarse-grain structure with a weak grain-boundary network of ferrite that had not been corrected by postweld heat treatment. The combination of the cracks and this unfavorable microstructure provided a weakened condition that resulted in catastrophic, brittle fracture under normal applied loads. The design was altered to eliminate the weld adjacent to the threaded portion of the rod.
Image
Published: 01 January 2002
Fig. 5 Design details that can affect galvanic corrosion. (a) Fasteners should be more noble than the components being fastened; undercuts should be avoided, and insulating washers and spaces should be used to completely isolate the fastener. (b) Weld filler metals should be more noble than
More
Image
Published: 15 January 2021
Fig. 5 Design details that can affect galvanic corrosion. (a) Fasteners should be more noble than the components being fastened; undercuts should be avoided, and insulating washers and spaces should be used to completely isolate the fastener. (b) Weld filler metals should be more noble than
More
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001339
EISBN: 978-1-62708-215-0
... side of the weld. The crack opened easily, exposing a fracture surface covered with a white, powdery deposit. Small, reflective, metallic-appearing droplets were observed throughout the white deposit. These droplets are indicated by arrows in Fig. 5 and were identified by energy-dispersive...
Abstract
The failure mode of through-wall cracking of a butt weld in a 5083-O aluminum alloy piping system in an ethylene plant was identified as mercury liquid metal embrittlement. As a result of this finding, 226 of the more than 400 butt welds in the system were ultrasonically inspected for cracking. One additional weld was found that had been degraded by mercury. A welding team experienced in repairing mercury contaminated piping was recruited to make the repairs. Corrective action included the installation of a sulfur-impregnated charcoal mercury-removal bed and replacement of the aluminum equipment that was in operation prior to the installation of the mercury-removal bed.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0046911
EISBN: 978-1-62708-227-3
... in submerged arc welding was high in silicon and that the large amount of weld metal deposited in a single pass remained molten long enough to dissolve much larger amounts of silicon than could be dissolved in manual shielded metal arc welding. Furthermore, the coating on the welding rods used in shielded...
Abstract
A steel galvanizing vat measuring 3 x 1.2 x 1.2 m (10 x 4 x 4 ft) and made of 19 mm thick carbon steel plate (ASTM A285, grade B)) at a shipbuilding and ship-repair facility failed after only three months of service. To verify suspected failure cause, two T joints were made in 12.5 mm thick ASTM A285, grade B, steel plate. One joint was welded using the semiautomatic submerged arc process with one pass on each side. A second joint was welded manually by the shielded metal arc process using E6010 welding rod and four passes on each side. The silicon content of the shielded metal arc weld was 0.54%, whereas that of the submerged arc weld was 0.86%. After being weighed, the specimens were submerged in molten zinc for 850 h. Analysis (visual inspection, chemical analysis, 100x 2% nital-etched micrographs) supported the conclusions that the vat failed due to molten-zinc corrosion along elongated ferrite bands, possibly because silicon was dissolved in the ferrite and thus made it more susceptible to attack by the molten zinc. Recommendations included rewelding the vat using the manual shielded metal arc process with at least four passes on each side.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003556
EISBN: 978-1-62708-180-1
... the corrosion process by the rapid regeneration of MnO 2 ( Eq 10 ) ( Ref 28 ). Manganese-oxidizing organisms have been implicated in the MIC of 304L stainless steel welds ( Ref 29 ). Formation of manganic oxide ennobles the potential of stainless steel in natural waters ( Ref 30 ). Ennoblement shifts...
Abstract
This article focuses on the mechanisms of microbially induced or influenced corrosion (MIC) of metallic materials as an introduction to the recognition, management, and prevention of microbiological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It discusses the degradation of various protective systems, such as corrosion inhibitors and lubricants. The article describes the failure analysis of steel, iron, copper, aluminum, and their alloys. It also discusses the probes available to monitor conditions relevant to MIC in industrial systems and the sampling and analysis of conditions usually achieved by the installation of removable coupons in the target system. The article also explains the prevention and control strategies of MIC in industrial systems.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006824
EISBN: 978-1-62708-329-4
... tensile stresses from forming operations or welding can reduce fatigue endurance. Residual compressive stresses have been intentionally introduced by shot peening to reduce the effective peak stress. To prevent HCF failures, shot peening would have to lower the effective stress below the endurance limit...
Abstract
This article focuses on common failures of the components associated with the flow path of industrial gas turbines. Examples of steam turbine blade failures are also discussed, because these components share some similarities with gas turbine blading. Some of the analytical methods used in the laboratory portion of the failure investigation are mentioned in the failure examples. The topics covered are creep, localized overheating, thermal-mechanical fatigue, high-cycle fatigue, fretting wear, erosive wear, high-temperature oxidation, hot corrosion, liquid metal embrittlement, and manufacturing and repair deficiencies.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001825
EISBN: 978-1-62708-241-9
... crack with both faces of the crack surface still intact. The fracture surfaces of cracks B and C were coated with black and green nonmetallic deposits. On the surface of crack B, there were rachet marks along the toe of the weld ( Fig. 3 ). One portion of the exposed crack surface had a thumbnail...
Abstract
A type 304 stainless steel tube that failed in a boiler stack economizer was analyzed to determine the cause. The investigation consisted of visual, SEM/EDS, and metallographic analysis. Several degradation mechanisms appeared to be at work, including pitting corrosion, chloride stress corrosion cracking, and fatigue fracture. Investigators concluded that the primary failure mechanism was fatigue fracture, although either of the other mechanisms may have eventually caused the tube to fail in the absence of fatigue.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001176
EISBN: 978-1-62708-229-7
... was in clear contrast with the red coating on the rest of the inner surface. The other pipe section (No. 2) also contained a circumferential welding joint. The cross-sectional cut was situated approx. 10 mm from the bead. After the section was cut longitudinally, the welding seam, in contrast to the first...
Abstract
A backwell tube situated in the combustion chamber of a 100 atm boiler, which had been in service for many years, failed. The temperature of the saturated steam was about 300 deg C. Two pipe sections with attacked areas in the circumferential welding joint were examined for cause of failure. First section showed strong pit or trench-like attack in the welding seam on the inner surface. A bluish-black corrosion product adhered to the pits. The second section showed small blisters at the welding seam. The metallographic examination of the first section showed welding seam was strongly reduced in bulk from the inside and covered with a thick crumbling layer of magnetic iron oxide (Fe3-O4). This was a corrosion product resulting from the operation of the boiler. In addition, it was decarburized from the inside, and interspersed with grain boundary cracks. This form of attack is typical for the decarburization of steel by high-pressure hydrogen. Hence, the defects in the pipe sections were the result of scaling during the operation of the steam boiler. It was recommended to avoid unnecessary overheating during the welding of materials for high-pressure steam boiler operations.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
... areas was so extensive that whole sections of the impeller had to be cut out and replaced with fabricated pieces in the shop. Fig. 15 Accelerated cavitation erosion and cracking associated with austenitic stainless steel weld deposits on a martensitic stainless steel (CA-15) impeller vane...
Abstract
Erosion of solid surfaces can be brought about solely by liquids in two ways: from damage induced by formation and subsequent collapse of voids or cavities within the liquid, and from high-velocity impacts between a solid surface and liquid droplets. The former process is called cavitation erosion and the latter is liquid-droplet erosion. This article emphasizes on manifestations of damage and ways to minimize or repair these types of liquid impact damage, with illustrations.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006822
EISBN: 978-1-62708-329-4
... may include, but is not limited to: Date of installation Piping material grade Diameter and wall thickness Seam weld type (if any) Coating type Cathodic protection information Previous hydrotest results (including dates, pressures, and times) In-line inspection results...
Abstract
This article discusses the failure analysis of several steel transmission pipeline failures, describes the causes and characteristics of specific pipeline failure modes, and introduces pipeline failure prevention and integrity management practices and methodologies. In addition, it covers the use of transmission pipeline in North America, discusses the procedures in pipeline failure analysis investigation, and provides a brief background on the most commonly observed pipeline flaws and degradation mechanisms. A case study related to hydrogen cracking and a hard spot is also presented.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
... the resistance of the current path in the solution and the external circuit. Thus, if dissimilar pipes are butt welded with the electrolyte flowing through them, the most severe corrosion will occur adjacent to the weld on the anodic member. Effect of Shape The geometry of the circuit elements determines...
Abstract
This article addresses the forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. It describes the mechanisms of corrosive attack for specific forms of corrosion such as galvanic corrosion, uniform corrosion, pitting and crevice corrosion, intergranular corrosion, and velocity-affected corrosion. The article contains a table that lists combinations of alloys and environments subjected to selective leaching and the elements removed by leaching.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001392
EISBN: 978-1-62708-231-0
.... It is satisfactory to note that, in the replacement ring, the form of the Tee joint was modified to incorporate a full penetration butt and fillet weld. A further contributory factor was provided by the 1 16 in. thick scale which had been deposited on the furnace ring during service, and this served...
Abstract
Following leakage which developed within the furnace of a horizontal multi-tubular type boiler, examination revealed a series of cracks adjacent to the stiffening rings in the first plain furnace ring. The fire-side surface of the sample was coated with a layer of oxide scale. Microscopical examination of sections through the cracks showed them to be filled with oxide and to be of the multi-branched type, having blunt terminations. The general nature of the cracks was characteristic of cracking from thermal or corrosion fatigue, as results from the operation of varying stresses in an oxidizing or corrosive environment. The cracking in this particular case was due principally to the inordinately large gap between the components. Additionally, several of the sealing welds of the tubes to the back tube plate were cracked in a radial manner, and it would appear that in addition, abnormal thermal conditions may well have been experienced intermittently in service.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001816
EISBN: 978-1-62708-180-1
... in tube metal temperatures. In a superheater or a reheater, such temperature increases can lead to premature creep failures, dissimilar-metal weld failures, and accelerated ash corrosion or oxidation. In furnace walls, deposits may also lead to hydrogen damage (additional information is provided...
Abstract
This article explains the main types and characteristic causes of failures in boilers and other equipment in stationary and marine power plants that use steam as the working fluid with examples. It focuses on the distinctive features of each type that enable the failure analyst to determine the cause and suggest corrective action. The causes of failures include tube rupture, corrosion or scaling, fatigue, erosion, and stress-corrosion cracking. The article also describes the procedures for conducting a failure analysis.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... surfaces affects the resistance of the current path in the solution and the external circuit. Thus, if dissimilar pipes are butt welded with the electrolyte flowing through them, the most severe corrosion will occur immediately adjacent to the weld on the anodic member. Effect of Shape The geometry...
Abstract
Corrosion is the electrochemical reaction of a material and its environment. This article addresses those forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. Various forms of corrosion covered are galvanic corrosion, uniform corrosion, pitting, crevice corrosion, intergranular corrosion, selective leaching, and velocity-affected corrosion. In particular, mechanisms of corrosive attack for specific forms of corrosion, as well as evaluation and factors contributing to these forms, are described. These reviews of corrosion forms and mechanisms are intended to assist the reader in developing an understanding of the underlying principles of corrosion; acquiring such an understanding is the first step in recognizing and analyzing corrosion-related failures and in formulating preventive measures.
1