Skip Nav Destination
Close Modal
By
Adrian Pierorazio, Nicholas E. Cherolis, Michael Lowak, Daniel J. Benac, Matthew T. Edel
Search Results for
Weld decay
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-18 of 18 Search Results for
Weld decay
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001402
EISBN: 978-1-62708-220-4
... Abstract Weld-decay and stress-corrosion cracking developed in several similar all-welded vessels fabricated from austenitic stainless steel. During a periodic examination cracks were revealed at the external surface of one of the vessels. External patch welds had been applied...
Abstract
Weld-decay and stress-corrosion cracking developed in several similar all-welded vessels fabricated from austenitic stainless steel. During a periodic examination cracks were revealed at the external surface of one of the vessels. External patch welds had been applied at these and several other corresponding locations. Cracks visible on the external surface developed from the inside in a region close to the toe of the internal fillet weld to the deflector plate, and another deep crack associated with a weld cavity is visible slightly to the right of the main fissure. Microscopic examination revealed that precipitation of carbides at the grain boundaries had taken place in the vicinity of the cracks, but that the paths of the cracks were not wholly intergranular. Conditions present in the vicinity of the internal fillet weld must have been such as to favor both inter- and transgranular cracking. It is probable that the heating associated with the repair welds made from time to time also contributed to the trouble. The transgranular cracks, however, were indicative of stress-corrosion cracking.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001395
EISBN: 978-1-62708-220-4
... tanks Weld decay Welded joints Austenitic stainless steel Intergranular corrosion “Weld decay” is the term commonly applied to a form of intergranular corrosion to which certain austenitic steels are susceptible, particularly after being heated in the range 550–850°C. The effect first showed...
Abstract
Leakage which developed from two storage vessels handling a mixture of trimethyl formate and chloroform took place from the dished head at the edge of the circumferential weld to the shell which incorporated a backing ring. Some shallow pitting had occurred under the backing ring on the shell side behind the tack welds securing the backing strip to the shell. Intermittent pitting had also occurred along the head side of the weld at the other end the vessel. There was no pitting along the main longitudinal weld of the shells in any vessel nor around any of the branches set into the shells. The material of the original vessels was specified as BS 970 - 1966. En 58J. Sections taken through pitted areas from both head welds showed preferential attack along the grain-boundaries, some grains becoming completely detached. The location of the pitting and preferential attack was at such a distance from the weld that the heat of welding could have raised the metal temperature to 550 to 700 deg C (1292 deg F). The corrosion of the shell material which occurred at the shell side of the weld under the backing ring is also an example of crevice corrosion.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001401
EISBN: 978-1-62708-220-4
... to the weld or a short distance from it and on alternate sides. Microscopical examination did not reveal any intergranular carbide precipitation, such as is well known to result in the weld-decay mode of failure. It was concluded that the primary cause of failure was stress-corrosion cracking arising from...
Abstract
Following disruption of the austenitic stainless steel basket of a hydro-extractor used for the separation of crystals of salt (sodium chloride) from glycerin, samples of the broken parts were analyzed. Examination revealed that the fish-plates joining the reinforcing hoops had broken, the shell had split from top to bottom adjacent to the weld, the top and bottom cover plates had become loose, all the rivets having pulled out, and the shaft was also found to be bent. Fracture took place in an irregular manner and was of the shear type towards both ends; it occurred immediately adjacent to the weld or a short distance from it and on alternate sides. Microscopical examination did not reveal any intergranular carbide precipitation, such as is well known to result in the weld-decay mode of failure. It was concluded that the primary cause of failure was stress-corrosion cracking arising from the combined effect of residual stresses and the corrosive effect of the material being centrifuged. If the shell had been stress-relieved after fabrication, the failure likely would not have occurred.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001404
EISBN: 978-1-62708-220-4
... itself originated from the external side of the plate, i.e. from the region covered by the shrouding ring. They were predominantly of the transgranular type. Because the cracks were not of the intergranular type as usually found with weld decay, they were considered to be indicative of stress-corrosion...
Abstract
After about four years of service, cracks appeared on the internal or process-side surfaces of four evaporator pans in a sugar concentrator. The pans consisted of a Mo stabilized austenitic stainless steel inner vessel surrounded by a mild steel steam jacket. Corrosion of the external surface had taken place in the form of confluent pitting over a band adjacent to the fillet weld which attached the pan to the blocking ring. Numerous cracks were present in this corroded zone. Microscopical examination of several specimens cut from the sample revealed that the internal cracks in the pan itself originated from the external side of the plate, i.e. from the region covered by the shrouding ring. They were predominantly of the transgranular type. Because the cracks were not of the intergranular type as usually found with weld decay, they were considered to be indicative of stress-corrosion cracking. Stresses responsible for the cracking resulted from weld contraction. The pans had been hosed down periodically with water from local boreholes to remove sugar from the external surfaces, which introduced the corrosive medium.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001317
EISBN: 978-1-62708-215-0
... that was kept in storage for 1 year Clear evidence of sensitization was found in areas where IGSCC occurred. Sensitization was extensive in the dished end that had been exposed to sodium at high temperature, and it occurred in a narrow band similar to that typical of weld decay in the dished end that had been...
Abstract
Two AISI type 316 stainless steel dished ends failed through the formation of intergranular stress-corrosion cracks (IGSCC) within a few months of service. The dished ends failed in the straight portions near the circumferential welds that joined the ends to the cylindrical portions of the vessel. Both dished ends were manufactured from the same batch and were supplied by the same manufacturer One of the dished ends had been exposed to sodium at 550 deg C (1020 deg F) for 500 h before failure due to sodium leakage was detected. The other dished end was used to fabricate a second vessel that was kept in storage for 1 year Clear evidence of sensitization was found in areas where IGSCC occurred. Sensitization was extensive in the dished end that had been exposed to sodium at high temperature, and it occurred in a narrow band similar to that typical of weld decay in the dished end that had been kept in storage. Solution annealing was recommended to relieve residual stress, thereby reducing the probability of failure. It was also recommended that the carbon content of the steel be lowered, i.e., that a 316L grade be used.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001394
EISBN: 978-1-62708-234-1
...—a condition which could arise in a casting. An analogous effect also occurs during welding, hence the use of the term weld decay to describe corrosion of this form in fabricated articles. It is usual, in steels of weldable quality, to add titanium or niobium, the so-called “stabilising elements” which...
Abstract
A 1-in. diam pump spindle fractured within the length covered by the boss of the impeller which was attached to the spindle by means of an axial screw. The pump had been in use in a chemical plant handling mixtures of organic liquids and dilute sulfuric acid having a pH value of 2 to 4 at temperatures of 80 to 90 deg C (176 to 194 deg F). The fracture was unusual in that it was of a fibrous nature, the fibers-which were orientated radially-were readily detachable. The surface of the spindle adjacent to the fracture had an etched appearance and the mode of cracking in this region suggested that failure resulted from an intergranular attack. Subsequent microscope examination confirmed the generally intergranular mode of failure. A macro-etched section near the fracture revealed a radial arrangement of columnar crystals, indicating that the spindle was a cast and not a wrought product as had been presumed. Spectroscope examination showed this particular composition (Fe-23Cr-18Ni-1.8Mo-1.2Si) did not conform to a standard specification and is apparently a proprietary alloy. It was evident that the particular mode of failure was related to the inherent structure of the material.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001770
EISBN: 978-1-62708-241-9
... all grades of austenitic stainless steels, and Ni-based alloys are susceptible to SCC given the right environment and conditions [ 5 ]. Since large storage tanks and vessels are usually fabricated by welding, there always exists great chances of weld decay (also called sensitization) which results...
Abstract
A storage tank had been in service at a petrochemical plant for 13 years when inspectors discovered cracks adjacent to weld joints and in the base plate near the foundation. The tank was made from AISI 304 stainless steel and held styrene monomer, a derivative of benzene. The cracks were subsequently welded over with 308 stainless steel filler wire and the base plate was replaced with new material. Soon after, the tank began leaking along the weld bead, triggering a full-scale investigation; spectroscopy, optical and scanning electron microscopy, fractography, SEM-EDS analysis, and microhardness, tensile, and impact testing. The results revealed transgranular cracks in the HAZ and base plate, likely initiated by stresses developed during welding and the presence of chloride from seawater used in the plant. It was also found that the repair weld was improperly done, nor did it include a postweld heat treatment to remove weld sensitization and minimize residual stresses.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001632
EISBN: 978-1-62708-234-1
... temperature cycles calculated to be from 400 to 30 deg C (752 to 86 deg F). The window was activated to >200 Sv/h. It was determined through analysis using remote handling techniques and hot cells that the crack initiated near a spot weld used to affix thermocouples to the window surface. In addition...
Abstract
A double-walled, hemispherical metal beam exit window made of alloy 718 developed a crack during service, leading to coolant leakage. The window had been exposed to radiation damage from 800 MeV protons and a cyclic stress from 600 MPa tensile to near zero induced by numerous temperature cycles calculated to be from 400 to 30 deg C (752 to 86 deg F). The window was activated to >200 Sv/h. It was determined through analysis using remote handling techniques and hot cells that the crack initiated near a spot weld used to affix thermocouples to the window surface. In addition to analysis of the crack, some of the irradiated material from the window was used to measure mechanical properties. Hot cell techniques for preparation of samples and testing were developed to determine true operating conditions of radiation, strain, and temperature.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001171
EISBN: 978-1-62708-219-8
... compensated by stabilizing elements. Summary The authors examined a stainless steel pipeline, used in a marine environment, which showed decay along the weldings. These defects were evidenced by means of metallographic and electrochemical examination. The probable causes of the corrosion...
Abstract
The defects observed along weldings of stainless steel pipelines employed in marine environments were evidenced by metallographic and electrochemical examination. A compilation of cases on the effect of defective weldings, in addition to improper choice of stainless steel for water pipelines, lead to the conclusion that intercrystalline corrosion in steels involved precipitation of a surplus phase at grain boundaries. Intercrystalline corrosion in austenitic stainless steels due to precipitation of chromium carbides during conditions generated due to welding and ways to avoid the precipitation (including reduction of carbon content, appropriate heat treatment, cold work of steel, reduction of austenitic grain size and stabilizing elements) were described. The presence of microcracks due to highly localized heat concentrations with consequent thermal expansion and considerable shrinkages during cooling was investigated. The specimens were taken from various sources including transverse and longitudinal welding seam, sensitized areas and it was concluded appropriate material selection with respect to medium could control some corrosion processes.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001639
EISBN: 978-1-62708-229-7
...-induced stress-corrosion cracking (SCC). The cracks are associated with fabrication welds and are driven by the residual stresses in the weld heat-affected zones. Later tank designs include a postfabrication stress relief anneal, and no cracking has been observed in the new tanks. The residual stress...
Abstract
This paper describes the remote ultrasonic (UT) examinations of a high-level radioactive waste storage tank at the Savannah River Site in South Carolina. The inspections, carried out by E.R. Holland, R.W. Vande Kamp, and J.B. Elder, were performed from the contaminated, annular space of the 46 year old, inactive, 1.03 million gallon waste storage tank. A steerable, magnetic wheel wall crawler was inserted into the annular space through small (6 in., or 150 mm, diam) holes/risers in the tank top. The crawler carried the equipment used to simultaneously collect data with up to four UT transducers and two cameras. The purpose of this inspection was to verify corrosion models and to investigate the possibility of previously unidentified corrosion sites or mechanisms. The inspections included evaluation of previously identified leak sites, thickness mapping, and crack detection scans on specified areas of the tank. No indications of reportable wall loss or pitting were detected. All thickness readings were above minimum design tank-wall thickness, although several small indications of thinning were noted. The crack detection and sizing examinations revealed five previously undetected indications, four of which were only partially through-wall. The cracks that were examined were found to be slightly longer than expected but still well within the flaw size criteria used to evaluate tank structural integrity.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001820
EISBN: 978-1-62708-180-1
... (1000 psi) and are made of steel pipes welded or mechanically coupled together. Since the 1940s, all of the lines have been assembled by welding. The third type of pipeline is a gas-distribution line that mainly transports natural gas within cities at pressures that vary from several tens of pounds per...
Abstract
This article describes the failure characteristics of high-pressure long-distance pipelines. It discusses the causes of pipeline failures and the procedures used to investigate them. The use of fracture mechanics in failure investigations and in developing remedial measures is also reviewed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003556
EISBN: 978-1-62708-180-1
... the corrosion process by the rapid regeneration of MnO 2 ( Eq 10 ) ( Ref 28 ). Manganese-oxidizing organisms have been implicated in the MIC of 304L stainless steel welds ( Ref 29 ). Formation of manganic oxide ennobles the potential of stainless steel in natural waters ( Ref 30 ). Ennoblement shifts...
Abstract
This article focuses on the mechanisms of microbially induced or influenced corrosion (MIC) of metallic materials as an introduction to the recognition, management, and prevention of microbiological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It discusses the degradation of various protective systems, such as corrosion inhibitors and lubricants. The article describes the failure analysis of steel, iron, copper, aluminum, and their alloys. It also discusses the probes available to monitor conditions relevant to MIC in industrial systems and the sampling and analysis of conditions usually achieved by the installation of removable coupons in the target system. The article also explains the prevention and control strategies of MIC in industrial systems.
Book Chapter
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006804
EISBN: 978-1-62708-329-4
... and local metal loss, blisters and laminations, weld misalignment and shell distortion, cracklike flaws, and fire damage. By using the guide, results of an FFS assessment can be applied in making run-repair-replace decisions for potentially damaged equipment. In addition to API 579-1/ASME FFS-1 ( Ref 4...
Abstract
This article addresses the effects of damage to equipment and structures due to explosions (blast), fire, and heat as well as the methodologies that are used by investigating teams to assess the damage and remaining life of the equipment. It discusses the steps involved in preliminary data collection and preparation. Before discussing the identification, evaluation, and use of explosion damage indicators, the article describes some of the more common events that are considered in incident investigations. The range of scenarios that can occur during explosions and the characteristics of each are also covered. In addition, the article primarily discusses level 1 and level 2 of fire and heat damage assessment and provides information on level 3 assessment.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006936
EISBN: 978-1-62708-395-9
... material systems. The primary aims are weld inspection, void and inclusion detection, and crack location in forged or cast metallic parts. Other items of interest are possible flow patterns and knit lines from injection molding. The techniques are well developed and reasonably simple for homogeneous...
Abstract
Of the many different nondestructive evaluation (NDE) techniques, ultrasonic inspection continues to be the leading nondestructive method for inspecting composite materials, because measurements can be quantitative and the typical defect geometries and orientations lend themselves to detection and characterization. This article focuses on the three common methods for ultrasonic nondestructive inspection of plastics, namely pitch-catch, through-transmission, and pulse-echo, as well as the three basic types of ultrasonic NDE scans: the A-scan, B-scan, and C-scan. The discussion includes the linear and phased array systems that are sometimes used for large-scale inspection tasks to reduce scan times, the various gating and image processing techniques, and how ultrasonic data are interpreted and presented. A brief section on future trends in ultrasonic inspection is presented at the end of the article.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001617
EISBN: 978-1-62708-227-3
...., casting, forging) as well as how the component was fabricated (e.g., hot or cold working) Any joining process used (e.g., welding, brazing) The heat treatment of the material, including whether components were stress relieved after cold work, and the expected mechanical properties The finishing...
Abstract
Failures of various types of hydraulic couplings used to connect pipes in a naval vessel are described and used to illustrate some of the general procedures for failure analysis. Cracking of couplings, which were manufactured from nickel-aluminum- bronze extruded bar, occurred in both seawater and air environments. Cracks initiated at an unusually wide variety of sites and propagated in either longitudinal or circumferential directions with respect to the axis of the couplings. Fracture surfaces were intergranular and exhibited little or no sign of corrosion (for couplings cracked in air), and there was very limited plasticity. Macroscopic progression markings were observed on fracture surfaces of several couplings but were not generally evident. At very high magnifications, numerous slip lines, progression markings, and striations were observed. In a few cases, where complete separation had occurred in service, small areas of dimpled overload fracture were observed. It was concluded from these observations, and from comparisons of cracks produced in service with cracks produced by laboratory testing under various conditions, that cracking had occurred by fatigue. The primary cause of failure was probably the unanticipated presence of high-frequency stress cycles with very low amplitudes, possibly due to vibration, resonance, or acoustic waves transmitted through the hydraulic fluid. Secondary causes of failure included the presence of high tensile residual stresses in one type of coupling, undue stress concentrations at some of the crack-initiation sites, and overtorquing of some couplings during installation. Recommendations on ways to prevent further failures based on these causes are discussed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003563
EISBN: 978-1-62708-180-1
... for changes that influences both the microstructure and also residual stress profile. Results have indicated that martensitic decay is possible for long duration tests and high toughness of bearing material of acceptable hardness leads to high RCF life in both accelerated and field tests. The correct...
Abstract
A major cause of failure in components subjected to rolling or rolling/sliding contacts is contact fatigue. This article focuses on the rolling contact fatigue (RCF) performance and failure modes of overlay coatings such as those deposited by physical vapor deposition, chemical vapor deposition, and thermal spraying (TS). It provides a background to RCF in bearing steels in order to develop an understanding of failure modes in overlay coatings. The article describes the underpinning failure mechanisms of TiN and diamond-like carbon coatings. It presents an insight into the design considerations of coating-substrate material properties, coating thickness, and coating processes to combat RCF failure in TS coatings.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006781
EISBN: 978-1-62708-295-2
... for research would be to compute from first principles the decay in the maximum stress (σ max ) as a function of cycle number. In a very approximate way, this can be attempted by assuming that the coarsening kinetics follow the classical ripening equation and that dislocation motion is controlled by Orowan...
Abstract
Thermomechanical fatigue (TMF) is the general term given to the material damage accumulation process that occurs with simultaneous changes in temperature and mechanical loading. TMF may couple cyclic inelastic deformation accumulation, temperature-assisted diffusion within the material, temperature-assisted grain-boundary evolution, and temperature-driven surface oxidation, among other things. This article discusses some of the major aspects and challenges of dealing with TMF life prediction. It describes the damage mechanisms of TMF and covers various experimental techniques to promote TMF damage mechanisms and elucidate mechanism coupling interactions. In addition, life modeling in TMF conditions and a practical application of TMF life prediction are presented.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006829
EISBN: 978-1-62708-295-2
... materials such as gold plating are usually applied to prevent the formation of insulating oxide debris. However, when the coating is worn out and the interface reaches the nonnoble copper alloy substrate, insulating oxide debris is formed and the electrical conductivity is decayed. The durability...
Abstract
Fretting is a wear phenomenon that occurs between two mating surfaces; initially, it is adhesive in nature, and vibration or small-amplitude oscillation is an essential causative factor. Fretting generates wear debris, which oxidizes, leading to a corrosion-like morphology. This article focuses on fretting wear related to debris formation and ejection. It reviews the general characteristics of fretting wear, with an emphasis on steel. The review covers fretting wear in mechanical components, various parameters that affect fretting; quantification of wear induced by fretting; and the experimental results, map approach, measurement, mechanism, and prevention of fretting wear. This review is followed by several examples of failures related to fretting wear.