Skip Nav Destination
Close Modal
Search Results for
Water pipelines
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 52 Search Results for
Water pipelines
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001171
EISBN: 978-1-62708-219-8
... Abstract The defects observed along weldings of stainless steel pipelines employed in marine environments were evidenced by metallographic and electrochemical examination. A compilation of cases on the effect of defective weldings, in addition to improper choice of stainless steel for water...
Abstract
The defects observed along weldings of stainless steel pipelines employed in marine environments were evidenced by metallographic and electrochemical examination. A compilation of cases on the effect of defective weldings, in addition to improper choice of stainless steel for water pipelines, lead to the conclusion that intercrystalline corrosion in steels involved precipitation of a surplus phase at grain boundaries. Intercrystalline corrosion in austenitic stainless steels due to precipitation of chromium carbides during conditions generated due to welding and ways to avoid the precipitation (including reduction of carbon content, appropriate heat treatment, cold work of steel, reduction of austenitic grain size and stabilizing elements) were described. The presence of microcracks due to highly localized heat concentrations with consequent thermal expansion and considerable shrinkages during cooling was investigated. The specimens were taken from various sources including transverse and longitudinal welding seam, sensitized areas and it was concluded appropriate material selection with respect to medium could control some corrosion processes.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001653
EISBN: 978-1-62708-219-8
... components made of different alloys in the same valve, but this is not the best approach for all applications. Dezincification Valves Water pipelines Leaded red brass Silicon brass Dealloying/selective leaching Galvanic corrosion After six years of service, three water valves on a copper...
Abstract
After six years of service, three water shut-off valves on a copper water line in a residential building were found to be inoperative. Macroscopic examination of the valves after disassembly revealed that all three failed at the key that holds the spindle in the gate. In addition, the color near the key changed from yellow to red-brown. The gate was made from leaded red brass (85-5-5-5) while the spindle was made from silicon brass. It was concluded that the valves failed by dezincification resulting from bimetallic galvanic corrosion. It is common in the valve industry to use components made of different alloys in the same valve, but this is not the best approach for all applications.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001017
EISBN: 978-1-62708-219-8
... system pressure. Submerged arc welding Water pipelines Welded joints Welding defects 1020 UNS G10200 Joining-related failures The spiral-welded pipe in question was 10 in. in diameter and carried water under pressure. Numerous leaks were discovered in a section about 4 miles long...
Abstract
A 10-in. diam, spiral-welded AISI 1020 carbon steel pipe carrying water under pressure developed numerous leaks over a four mile section. The section was fabricated using submerged-arc welding from the outside surface. Each welded length of pipe had been subjected to a proof pressure approximately twice the specified design pressure and two-thirds the approximate yield point of the parent metal. No failures or leakage were observed during proof testing. Metallurgical examination corroborated visual checks, indicating a distinct lack of root penetration in the split areas. Splitting occurred as a result of inadequate root penetration. The most likely source of difficulty in the welding process was the linear speed. Probably, the failures would not have occurred in absence of the welding problem. Also, the pipe was inadequate for the specified design pressure, as well as the reported maximum system pressure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046535
EISBN: 978-1-62708-234-1
... of pipe were joined by shielded metal arc welding. Soundness of the welded joints was determined by water back-pressure testing after several lengths of pipe had been installed and joined. Before completion of the pipeline, a pressure drop was observed during back-pressure testing. An extreme depression...
Abstract
One of five underground drain lines intended to carry a highly acidic effluent from a chemical-processing plant to distant holding tanks failed in just a few months. Each line was made of 304L stainless steel pipe 73 mm (2 in.) in diam with a 5 mm (0.203 in.) wall thickness. Lengths of pipe were joined by shielded metal arc welding. Soundness of the welded joints was determined by water back-pressure testing after several lengths of pipe had been installed and joined. Before completion of the pipeline, a pressure drop was observed during back-pressure testing. An extreme depression in the backfill revealed the site of failure. Analysis (visual inspection, electrical conductivity, and soil analysis) supported the conclusions that the failure had resulted from galvanic corrosion at a point where the corrosivity of the soil was substantially greater than the average, resulting in a voltage decrease near the point of failure of about 1.3 to 1.7 V. Recommendations included that the pipelines be asphalt coated and enclosed in a concrete trough with a concrete cover. Also, magnesium anodes, connected electrically to each line, should be installed at periodic intervals along their entire length to provide cathodic protection.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001411
EISBN: 978-1-62708-234-1
... in service. The filler metal used was not resistant to the conditions to which it was exposed. Copper welding rods as per BS 1077 or a Cu-Ag-P brazing alloy as recommended in BS 699, would have been preferable. Dezincification Filler metals Materials selection Water pipelines Welded joints 60Cu...
Abstract
A welded joint between lengths of 4 in. OD x 13 SWG copper pipe which formed part of a cold-water main failed by cracking over one-third of the circumference. Microscopic examination of the filler metal showed that it had a structure corresponding to a brass of the 60:40 type commonly used for bronze welding. Failure resulted from dezincification of the joint material from the internal side of the tube. Also, a selective attack on the beta phase had occurred. It was evident that the loss in mechanical strength arising from the corrosion had resulted in the development of cracking in service. The filler metal used was not resistant to the conditions to which it was exposed. Copper welding rods as per BS 1077 or a Cu-Ag-P brazing alloy as recommended in BS 699, would have been preferable.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001064
EISBN: 978-1-62708-214-3
.... This covered a total period of 5 months. All pipework was hydrotested using untreated borehole water supplied to the site through 17 km (11 mi), 115 mm (4.5 in.) diam carbon steel pipework. The borehole water was resident in the pipelines for 2 months, but no water quality/corrosion monitoring was undertaken...
Abstract
Several hundred leaks were reported in the type 304 stainless steel pipelines, vessels, and tanks of a chemical plant at a tropical location within a few weeks after startup. Investigation of the failure involved a site visit, metallographic examination and analysis of the material, analysis of hydrotest waters, and microbiological examination of slime that had formed in certain pipework sections. It was determined that the failure resulted from microbially induced corrosion promoted by the use of poor-quality hydrotest water and uncontrolled hydrotesting practice. Use of appropriate hydrotesting procedures was recommended to prevent similar failures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c9001698
EISBN: 978-1-62708-222-8
.... It was concluded that pitting corrosion was a result of the corrosive waters supplied by the local water utility. Waters could be rendered non-pitting by increasing their pH to 8 or higher and neutralizing the free carbon dioxide. pH Water chemistry Water pipelines Copper pipe Pitting corrosion...
Abstract
A residential subdivision near Tampa, FL was constructed in 1984 through 1985. Several sections of copper pipe were removed from one residence that had reported severe leaking. Visual examination revealed extensive pitting corrosion throughout the ID surfaces of the sample. Microscopic evaluation of a cross section of a copper pipe revealed extensive pitting corrosion throughout the inner diametral surfaces of the pipe. Some pits had penetrated through the wall thickness, causing the pin hole leaks. Analysis of a sample of water obtained from the subdivision revealed relatively high hardness levels (210 mg/l), high levels of sulfate ions (55 mg/l), a pH of 7.6 and a sulfate-to-chloride ratio of 3:1. Analysis of corrosion product removed from the ID surfaces of the pipe section revealed that an environment rich in carbonates existed inside the pipe, a result of the hard water supply. It was concluded that pitting corrosion was a result of the corrosive waters supplied by the local water utility. Waters could be rendered non-pitting by increasing their pH to 8 or higher and neutralizing the free carbon dioxide.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001699
EISBN: 978-1-62708-234-1
... of corrosion monitoring and poor water quality. Pipe replacement and a regular water testing program were recommended. Monitoring Water pipelines Water treatment Steel pipe Uniform corrosion Crevice corrosion Biological corrosion A shopping mall in South Carolina was originally constructed...
Abstract
A shopping mall in South Carolina was originally constructed in 1988 and a second phase completed in 1989. The HVAC system inside the mall included an open, recirculating condenser water loop that served various fan coil units located within tenant spaces. The system had a recirculating capacity of about 44,000 gal (166,000 L) of water. It consisted primarily of steel pipes fitted with threaded connectors on the 2 in. (46 cm) pipes and bolted flanged couplings on the larger pipes. Seven years following the completion of the mall, corrosion problems were noted at the outer and inner surfaces of the pipe. Visual observations on the inner diametral surfaces revealed that the pipes were, in almost all cases, filled with corrosion products. A significant amount of base metal loss was documented in all of the samples. The cause of the observed corrosion was determined to be a lack of corrosion monitoring and poor water quality. Pipe replacement and a regular water testing program were recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001701
EISBN: 978-1-62708-219-8
... by oxygen concentration cells and oxygen-pitting related corrosion. Both types of corrosion are due to the poor quality of the water and the lack of corrosion control in the water system. Water chemistry Water heaters Water pipelines Water treatment ASTM A106 UNS K03006 Crevice corrosion...
Abstract
A closed-loop hot water heating system at a museum in South Carolina was the subject of failure evaluation. The system consisted of plain carbon steel pipes (Schedule 40) made of ASTM A 106 or A 53 (ERW or seamless). The supply and return lines were made of the same materials. The fittings were mechanically threaded assemblies. Temperatures ranged from 150 to 155 deg F (65.6 to 68.3 deg C). Leaks in the system had reportedly initiated immediately after the building had been placed in service. The cause of corrosion inside the steel pipes was attributed to tuberculation caused by oxygen concentration cells and oxygen-pitting related corrosion. Both types of corrosion are due to the poor quality of the water and the lack of corrosion control in the water system.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001055
EISBN: 978-1-62708-214-3
... test results from the steel mill, procedure qualification tests of the welding, and design changes to reduce water hammer were also recommended. Impact toughness Notch sensitivity Pipe joints Pipe Water pipelines Welding parameters ASTM A283 grade D UNS K02702 Joining-related failures...
Abstract
The repeated failure of a welded ASTM A283 grade D pipe that was part of a 6 km (4 mi) line drawing and conducting river water to a water treatment plant was investigated. Failure analysis was conducted on sections of pipe from the third failure. Visual, macrofractographic, SEM fractographic, metallographic, chemical, and mechanical property (tension and impact toughness) analyses were conducted. On the basis of the tests and observations, it was concluded that the failure was the combined result of poor notch toughness (impact) properties of the steel, high stresses in the joint area, a possible stress raiser at the intersection of the spiral weld and girth weld, and sudden impact loading, probably due to water hammer. Use of a semi- or fully killed steel with a minimum Charpy V-notch impact value of 20 J (15 ft·lbf) at 0 deg C (32 deg F) was recommended for future water lines. Certified test results from the steel mill, procedure qualification tests of the welding, and design changes to reduce water hammer were also recommended.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001808
EISBN: 978-1-62708-241-9
... experienced multiple failures after only 8 months of service. The 24 in. (61 cm) pipeline supplied brackish water to a water treatment overflow reservoir used to house sewage when the treatment facility experienced overload. The pipeline operated on at least a weekly basis or when there was a heavy rainfall...
Abstract
Six cases of failure attributed to microbiologically influenced corrosion (MIC) were analyzed to determine if any of the failures could have been avoided or at least predicted. The failures represent a diversity of applications involving typical materials, primarily stainless steel and copper alloys, in contact with a variety of liquids, chemistries, and substances. Analytical techniques employed include stereoscopic examination, energy dispersive x-ray spectroscopy (EDS), temperature and pH testing, and metallographic analysis. The findings indicate that MIC is frequently the result of poor operations or improper materials selection, and thus often preventable.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001148
EISBN: 978-1-62708-228-0
...-1.2Mn Stress-corrosion cracking Hydrogen damage and embrittlement Introduction In the fall of 1978, a natural gas pipeline ruptured, and subsequently, the escaping gas was ignited, apparently by a hot water heater pilot light in a nearby trailer park. The resultant fire burned for over one...
Abstract
A natural gas pipeline explosion and subsequent fire significantly altered the pipeline steel microstructure, obscuring in part the primary cause of failure, namely, coating breakdown at a local hard spot in the steel. Chemical analysis was made on pieces cut from the portion of the pipe that did not fracture during the explosion and from piece 5-1 which contained the fracture origin site. Both pieces were found to have 0.30% carbon and 1.2% Mn with sulfur and phosphorus impurities acceptably low. Fracture mechanics analysis used in conjunction with fractographic results confirmed the existence of a very hard spot in the steel prior to the explosion, which was softened significantly in the ensuing fire. This finding allowed the micromechanism leading to fracture to be identified as hydrogen embrittlement resulting from cathodic charging.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006822
EISBN: 978-1-62708-329-4
... with a soft nylon brush using water and a mild detergent or alcohol is often sufficient to remove surface debris and lightly adhering corrosion products. Specific solvents may be beneficial for removing hydrocarbon contamination, and ultrasonic baths can be used for more tightly adhering deposits. Inhibited...
Abstract
This article discusses the failure analysis of several steel transmission pipeline failures, describes the causes and characteristics of specific pipeline failure modes, and introduces pipeline failure prevention and integrity management practices and methodologies. In addition, it covers the use of transmission pipeline in North America, discusses the procedures in pipeline failure analysis investigation, and provides a brief background on the most commonly observed pipeline flaws and degradation mechanisms. A case study related to hydrogen cracking and a hard spot is also presented.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006788
EISBN: 978-1-62708-295-2
... by the corrosion process to produce insoluble black iron sulfide. Traditional models for predicting MIC in liquid pipelines in the oil and gas sector made the presence of iron sulfide at significant concentrations (>10 μg/cm 2 ) on the steel surface a prerequisite for MIC ( Ref 24 , 25 ). In waters where...
Abstract
This article focuses on the mechanisms of microbiologically influenced corrosion as a basis for discussion on the diagnosis, management, and prevention of biological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It begins with an overview of the scope of microbial activity and the corrosion process. Then, various mechanisms that influence corrosion in microorganisms are discussed. The focus is on the incremental activities needed to assess the role played by microorganisms, if any, in the overall scenario. The article presents a case study that illustrates opportunities to improve operating processes and procedures related to the management of system integrity. Industry experience with corrosion-resistant alloys of steel, copper, and aluminum is reviewed. The article ends with a discussion on monitoring and preventing microbiologically influenced corrosion failures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003556
EISBN: 978-1-62708-180-1
... effects are of significant concern in failure analysis and prevention. Microbially induced corrosion problems afflict water-handling operations and manufacturing processes in oil and gas production, pipelining, refining, petrochemical synthesis, power production, fermentation, waste water treatment...
Abstract
This article focuses on the mechanisms of microbially induced or influenced corrosion (MIC) of metallic materials as an introduction to the recognition, management, and prevention of microbiological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It discusses the degradation of various protective systems, such as corrosion inhibitors and lubricants. The article describes the failure analysis of steel, iron, copper, aluminum, and their alloys. It also discusses the probes available to monitor conditions relevant to MIC in industrial systems and the sampling and analysis of conditions usually achieved by the installation of removable coupons in the target system. The article also explains the prevention and control strategies of MIC in industrial systems.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001822
EISBN: 978-1-62708-241-9
... removed the external coating by grit blasting after the leakage was observed. The failed pipe as received for failure analysis is shown in Fig. 2 . Visual inspection revealed metal loss apparently resulting from erosion caused by the water jetting out of the cracks. No mechanical damage was seen anywhere...
Abstract
A newly installed pipeline leaked during cleaning prior to hydrotest at a pressure of approximately 400 psig. The intended hydrotest pressure was 750 psig. The pipeline was constructed from spiral-welded API 5L-X65 HSLA steel and was intended for seawater injection. Analysis included nondestructive testing, metallography, and scanning electron microscopy. Based on the results, the failure was attributed to transit fatigue, caused during highway transportation. Cracks along the toes of the weld from both the outside and inside surfaces, the transgranular nature of cracking, and the presence of fatigue striations all supported transit fatigue as the damage mechanism.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001235
EISBN: 978-1-62708-228-0
... ), Therefore it consisted of iron sulfide. The blisters gave off gas under considerable pressure when drilled open under acidic water. The gas contained 89.4% H 2 , 2.4% CO 2 , 7.0% N 2 and 1.7% O 2 . If the nitrogen-oxygen mixture that probably consists of air which penetrated during the capture of the gas...
Abstract
A welded natural gas line of 400 mm OD and 9 mm wall thickness made of unalloyed steel with 0.22C had to be removed from service after four months because of a pipe burst. Metallographic examination showed the pipe section located next to the gas entrance was permeated by cracks or blisters almost over its entire perimeter in agreement with the ultrasonic test results. Only the weld seam and a strip on each side of it were crack-free. Based on this investigation, the pipeline was taken out of service and reconstructed. To avoid such failures in the future, two preventative measures may be considered. One is to desulfurize the gas. Based on tests, however, the desulfurization would have to be carried very far to be successful. The second possibility is to dry the gas to such an extent as to prevent condensate, and this corrosion, from forming no matter how low winter temperatures may drop. This measure was ultimately recommended, deemed more effective and cheaper.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006796
EISBN: 978-1-62708-295-2
... is due to the entrainment of condensed water droplets from the heater. These conditions resulted in erosion on the first elbow downstream of the orifice and then led to the pinhole leak. An enlarged view in Fig. 11 shows the geometry of the erosion hole in the elbow. This hole was situated at an angle...
Abstract
Erosion of a solid surface can be brought about by liquid droplet impingement (LDI), which is defined as "progressive loss of original material from a solid surface due to continued exposure to erosion by liquid droplets." In this article, the emphasis is placed on the damage mechanism of LDI erosion under the influence of a liquid film and surface roughness and on the prediction of LDI erosion. The fundamentals of LDI and processes involved in initiation of erosion are also discussed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001820
EISBN: 978-1-62708-180-1
... square inch to a few inches of water where a line enters a home. This article will not discuss failures associated with these latter lines, but will address only the high-pressure gathering and transmission lines. The steels that have been used in the United States for line pipe range in yield...
Abstract
This article describes the failure characteristics of high-pressure long-distance pipelines. It discusses the causes of pipeline failures and the procedures used to investigate them. The use of fracture mechanics in failure investigations and in developing remedial measures is also reviewed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001013
EISBN: 978-1-62708-234-1
... carbon dioxide dissolved in water condensed from the gas stream, with organic acids possibly an aggravating factor. A gas analysis showed no other corrosive agents. No metallurgical or fabrication defects were found in the carbon steel part. The mode of attack was corrosion-erosion, caused...
Abstract
A wall section of a carbon steel choke body in gas service at 4400 psig blew out three months after the use of a corrosion inhibitor was stopped. Corrosion damage occurred in ripples, leaving both smoothly polished and unattacked areas. The corrodent in condensate wells was principally carbon dioxide dissolved in water condensed from the gas stream, with organic acids possibly an aggravating factor. A gas analysis showed no other corrosive agents. No metallurgical or fabrication defects were found in the carbon steel part. The mode of attack was corrosion-erosion, caused by the corrosive, high velocity gas flow. The corrosion rate of either the inhibited or uninhibited gas stream was too high for equipment in high pressure gas service. Type 410 (12% Cr) stainless steel was recommended for the choke bodies because other equipment such as valves made of type 410 showed no evidence of corrosion damage after three years' exposure. This change was made five years ago and there have been no failures since.
1