Skip Nav Destination
Close Modal
Search Results for
Vermicular graphite
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-9 of 9 Search Results for
Vermicular graphite
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0089657
EISBN: 978-1-62708-233-4
... for each lot. Investigation (visual inspection, fatigue testing, 0.25x/0.35x/50x magnifications, 2% nital etched 60x/65x magnifications, and SEM views) showed that most of the service fractures occurred in pistons containing vermicular graphite. Recommendations included ultrasonic testing of pistons...
Abstract
The gun mount used in two types of self-propelled artillery consists of an oil-filled recoil cylinder and a sand-cast (MIL-I-11466, grade D7003) ductile-iron piston that connects to the gun tube through a threaded rod. The piston contains several orifices through which oil is forced as a means of absorbing recoil energy. During operation, the piston is stressed in tension, pulled by oil pressure on one end and the opposing force of the gun tube on the other. The casting specification stipulated that the graphite be substantially nodular and that metallographic test results be provided for each lot. Investigation (visual inspection, fatigue testing, 0.25x/0.35x/50x magnifications, 2% nital etched 60x/65x magnifications, and SEM views) showed that most of the service fractures occurred in pistons containing vermicular graphite. Recommendations included ultrasonic testing of pistons already in the field to identify and reject those containing vermicular graphite. In addition, metallographic control standards were suggested for future production lots.
Image
Published: 01 January 2002
Fig. 49 Piston for a gun-recoil mechanism, sand cast from ductile iron conforming to MIL-I-11466, grade D7003, that fractured in fatigue because of vermicularity of graphite. (a) and (b) Two different views of the piston showing fractures; A and B indicate orifices (see text). Approximately
More
Image
in Fracture of Ductile-Iron Pistons for a Gun Recoil Mechanism as Affected by Type of Graphite
> ASM Failure Analysis Case Histories: Design Flaws
Published: 01 June 2019
Fig. 1 Piston for a gun-recoil mechanism, sand cast from ductile iron conforming to MIL-I-11466, grade D7003, that fractured in fatigue because of vermicularity of graphite. (a) and (b) Two different views of the piston showing fractures; A and B indicate orifices (see text). Approximately
More
Image
Published: 30 August 2021
Fig. 27 Piston for a gun-recoil mechanism, sand cast from ductile iron conforming to MIL-I-11466, grade D7003, that fractured in fatigue because of vermicularity of graphite. (a) and (b) Two different views of the piston showing fractures; A and B indicate orifices (see text). Original
More
Image
Published: 01 January 2002
Fig. 12 Internal discontinuities in a tire-mold casting. (a) Stringer-type inclusions adjacent to the surface. As-polished. (b) Structure below the surface. Note the change in graphite shape. Unetched. (c) Ferrite matrix with degenerate vermicular graphite nodules. Etched with 2% nital. All
More
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
... of ductile cast iron Black spots G 142 (a) Inclusions in the form of oxide skins, most often causing a localized seam Oxide inclusion or skins, seams G 143 (a) Folded films of graphitic luster in the wall of the casting Lustrous carbon films, or kish tracks G 144 Hard inclusions...
Abstract
The information provided in this article is intended for those individuals who want to determine why a casting component failed to perform its intended purpose. It is also intended to provide insights for potential casting applications so that the likelihood of failure to perform the intended function is decreased. The article addresses factors that may cause failures in castings for each metal type, starting with gray iron and progressing to ductile iron, steel, aluminum, and copper-base alloys. It describes the general root causes of failure attributed to the casting material, production method, and/or design. The article also addresses conditions related to the casting process but not specific to any metal group, including misruns, pour shorts, broken cores, and foundry expertise. The discussion in each casting metal group includes factors concerning defects that can occur specific to the metal group and progress from melting to solidification, casting processing, and finally how the removal of the mold material can affect performance.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... causing a localized seam Oxide inclusion or skins, seams G 143 (a) Folded films of graphitic luster in the wall of the casting Lustrous carbon films, or kish tracks G 144 Hard inclusions in permanent molded and die cast aluminum alloys Hard spots (a) Defects that under some...
Abstract
This article focuses on the general root causes of failure attributed to the casting process, casting material, and design with examples. The casting processes discussed include gravity die casting, pressure die casting, semisolid casting, squeeze casting, and centrifugal casting. Cast iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds. It presents the international classification of common casting defects in a tabular form.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006808
EISBN: 978-1-62708-329-4
Abstract
This article describes some of the welding discontinuities and flaws characterized by nondestructive examinations. It focuses on nondestructive inspection methods used in the welding industry. The sources of weld discontinuities and defects as they relate to service failures or rejection in new construction inspection are also discussed. The article discusses the types of base metal cracks and metallurgical weld cracking. The article discusses the processes involved in the analysis of in-service weld failures. It briefly reviews the general types of process-related discontinuities of arc welds. Mechanical and environmental failure origins related to other types of welding processes are also described. The article explains the cause and effects of process-related discontinuities including weld porosity, inclusions, incomplete fusion, and incomplete penetration. Different fitness-for-service assessment methodologies for calculating allowable or critical flaw sizes are also discussed.