1-20 of 173 Search Results for

Valve steel

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001352
EISBN: 978-1-62708-215-0
... Abstract Repeated failures of high-pressure ball valves were reported in a chemical plant. The ball valves were made of AFNOR Z30C13 martensitic stainless steel. Initial examination of the valves showed that failure occurred in a weld at the ball/stem junction end of austenitic stainless steel...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0091358
EISBN: 978-1-62708-233-4
... Abstract After about two years in service, a 303 stainless steel valve in contact with a carbonated soft drink in a vending machine occasionally dispensed a discolored drink with a sulfide odor. According to the laboratory at the bottling plant, the soft drink in question was strongly acidic...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046874
EISBN: 978-1-62708-229-7
... (625 to 750 deg F). Because the spring was enclosed and mounted above the valve, its temperature was probably slightly lower. The 195 mm (7 in.) OD x 305 mm (12 in.) long spring was made from a 35 mm (1 in.) diam rod of H21 hot-work tool steel. It had been in service for about four years and had been...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048117
EISBN: 978-1-62708-235-8
... Abstract Two outer valve springs made from air-melted 6150 pretempered steel wire broke during production engine testing. The springs were 50 mm in OD and 64 mm in free length, had five coils and squared-and-ground ends, and were made of 5.5 mm diam wire. It was revealed that fracture...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0046195
EISBN: 978-1-62708-225-9
... Abstract A pilot-valve bushing fractured after only a few hours of service. In operation, the bushing was subjected to torsional stresses with possible slight bending stresses. A slight misalignment occurred in the assembly before fracture. The bushing was made of 8617 steel and was case...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0045992
EISBN: 978-1-62708-225-9
... Abstract After two weeks of operation, a poppet used in a check valve to control fluid flow and with a maximum operating pressure of 24 MPa (3.5 ksi) failed during operation. Specifications required that the part be made of 1213 or 1215 rephosphorized and resulfurized steel. The poppet...
Image
Published: 01 January 2002
Fig. 6 Valve springs made from patented and drawn high-carbon steel wire. Distorted outer spring (left) exhibited about 25% set because of proeutectoid ferrite in the microstructure and high operating temperature. Outer spring (right) is satisfactory. More
Image
Published: 01 January 2002
Fig. 22 Original and improved designs of a 17-7 PH stainless steel valve-seat retainer spring. As originally designed, the inner tabs on the spring broke off as a result of fatigue, and the outer tab exhibited wear. More
Image
Published: 01 January 2002
Fig. 22 Chloride SCC in a type 347 stainless steel shaft in a hydrogen-bypass valve. More
Image
Published: 01 January 2002
Fig. 37 Fracture surface of a hardened steel valve spring that failed in torsional fatigue. Arrow indicates fracture origin at a subsurface nonmetallic inclusion. More
Image
Published: 01 January 2002
Fig. 33 Unetched section through a type 303 stainless steel valve exposed to an acidic soft drink in a vending machine. Micrograph shows localized corrosion along manganese sulfide stringer inclusions at the end-grain surface. 100× More
Image
Published: 15 January 2021
Fig. 6 Valve springs made from patented and drawn high-carbon steel wire. Distorted outer spring (a) exhibited approximately 25% set because of proeutectoid ferrite in the microstructure and high operating temperature. Outer spring (b) is satisfactory More
Image
Published: 15 January 2021
Fig. 44 Fracture surface of a hardened - steel valve spring that failed in torsional fatigue. Arrow indicates fracture origin at a subsurface nonmetallic inclusion . More
Image
Published: 15 January 2021
Fig. 33 Unetched section through a type 303 stainless steel valve exposed to an acidic soft drink in a vending machine. Micrograph shows localized corrosion along manganese sulfide stringer inclusions at the end-grain surface. Original magnification: 100× More
Image
Published: 15 January 2021
Fig. 40 Stress-corrosion cracking in a 17-4 PH stainless steel gate-valve stem that failed in high-purity water. (a) Photograph of the valve stem fracture surface showing stained area and cup-and-cone shearing at perimeter. (b) Micrograph showing secondary intergranular cracks branching from More
Image
Published: 30 August 2021
Fig. 36 Original and improved designs of a 17-7 PH stainless steel valve-seat retainer spring. As originally designed, the inner tabs on the spring broke off as a result of fatigue, and the outer tab exhibited wear More
Image
Published: 01 June 2019
Fig. 1 Stainless steel poppet-valve stem that fractured in service. More
Image
Published: 01 June 2019
Fig. 1 Unetched section through a type 303 stainless steel valve exposed to an acidic soft drink in a vending machine. Micrograph shows localized corrosion along manganese sulfide stringer inclusions at the end-grain surface. 100× More
Image
Published: 01 June 2019
Fig. 1 Original and improved designs of a 17-7 PH stainless steel valve-seat retainer spring. As originally designed, the inner tabs on the spring broke off as a result of fatigue, and the outer tab exhibited wear. More
Image
Published: 01 June 2019
Fig. 1 H21 tool steel safety-valve spring that fractured from corrosion fatigue in moist air. (a) Photograph of two of the 12 pieces into which the spring shattered. 0.3×. (b) Light fractograph showing typical corrosion-fatigue origin (arrow) and brittle final fracture. 0.7× More