Skip Nav Destination
Close Modal
By
Friedrich Karl Naumann, Ferdinand Spies
By
Friedrich Karl Naumann, Ferdinand Spies
Search Results for
Valve springs
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 66
Search Results for Valve springs
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Fatigue Fracture of Alloy Steel Valve Springs Because of Pipe
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048117
EISBN: 978-1-62708-235-8
... Abstract Two outer valve springs made from air-melted 6150 pretempered steel wire broke during production engine testing. The springs were 50 mm in OD and 64 mm in free length, had five coils and squared-and-ground ends, and were made of 5.5 mm diam wire. It was revealed that fracture...
Abstract
Two outer valve springs made from air-melted 6150 pretempered steel wire broke during production engine testing. The springs were 50 mm in OD and 64 mm in free length, had five coils and squared-and-ground ends, and were made of 5.5 mm diam wire. It was revealed that fracture was nucleated by an apparent longitudinal subsurface defect. The defect was revealed by microscopic examination to be a large pocket of nonmetallic inclusions (alumina and silicate particles) at the origin of the fracture. Partial decarburization of the steel was observed at the periphery of the pocket of inclusions. Torsional fracture was indicated by the presence of beach marks at a 45 deg angle to the wire axis. It was established that the spring fractured by fatigue nucleated at the subsurface defect.
Book Chapter
Fractured Valve Spring
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001158
EISBN: 978-1-62708-225-9
... Abstract A steel valve spring meeting Steel-Iron-Test 1570 fractured during the high-stress condition of the operation of its valve. Metallographic examination of a transverse section adjacent to the fracture and a longitudinal section through the crack showed the steel was free of major...
Abstract
A steel valve spring meeting Steel-Iron-Test 1570 fractured during the high-stress condition of the operation of its valve. Metallographic examination of a transverse section adjacent to the fracture and a longitudinal section through the crack showed the steel was free of major defects and was of high purity, although a number of minor surface defects such as rolling laps were found. The spring was heat treated and its surface strengthened by shot-peening, but the surface was also decarburized to a depth of approximately 0.03 mm which resulted in a lowering of the surface hardness. The fracture of this valve spring is therefore primarily due to surface defects, and secondly perhaps also to weak surface decarburization. No recommendation resulted from the investigation except to note that comparatively minor effects suffice to cause fractures in highly stressed springs.
Image
Valve springs made from patented and drawn high-carbon steel wire. Distorte...
Available to PurchasePublished: 01 January 2002
Fig. 6 Valve springs made from patented and drawn high-carbon steel wire. Distorted outer spring (left) exhibited about 25% set because of proeutectoid ferrite in the microstructure and high operating temperature. Outer spring (right) is satisfactory.
More
Image
Valve springs made from patented and drawn high-carbon steel wire. Distorte...
Available to Purchase
in Distortion Failure of an Automotive Valve Spring
> ASM Failure Analysis Case Histories: Failure Modes and Mechanisms
Published: 01 June 2019
Fig. 1 Valve springs made from patented and drawn high-carbon steel wire. Distorted outer spring (left) exhibited about 25% set because of proeutectoid ferrite in the microstructure and high operating temperature. Outer spring (right) is satisfactory.
More
Image
Valve springs made from patented and drawn high-carbon steel wire. Distorte...
Available to PurchasePublished: 15 January 2021
Fig. 6 Valve springs made from patented and drawn high-carbon steel wire. Distorted outer spring (a) exhibited approximately 25% set because of proeutectoid ferrite in the microstructure and high operating temperature. Outer spring (b) is satisfactory
More
Book Chapter
Prematurely Broken Valve Spring
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001153
EISBN: 978-1-62708-225-9
... Abstract A valve spring made of 4.1 mm diam wire, designed to withstand 10,000,000 stress cycles, fractured after only 2,000,000 cycles. The surface displayed impressions which indicated it had been treated by shot blasting. The spring has broken in two places. Fracture 1 was a torsional...
Abstract
A valve spring made of 4.1 mm diam wire, designed to withstand 10,000,000 stress cycles, fractured after only 2,000,000 cycles. The surface displayed impressions which indicated it had been treated by shot blasting. The spring has broken in two places. Fracture 1 was a torsional fatigue fracture which has started from a lobe-like surface defect and not, as is usual, from a point on the most highly stressed inner surface. Fracture 2, on the other hand, was a bending fatigue fracture with a starting point on both the inner and the outer surface of the spiral. The objective of the shot blasting, to put the surface into a state of even compressive internal stress, which must first be overcome during subsequent bending and torsional loading before the boundary zone comes under tensile stress, was therefore not realized in this case. On the contrary, the shot blasting led to a state of internal stress which favored fracture of the spring.
Book Chapter
Distortion Failure of an Automotive Valve Spring
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0092131
EISBN: 978-1-62708-234-1
... Abstract The engine of an automobile lost power and compression and emitted an uneven exhaust sound after several thousand miles of operation. When the engine was dismantled, it was found that the outer spring on one of the exhaust valves was too short to function properly. The short steel...
Abstract
The engine of an automobile lost power and compression and emitted an uneven exhaust sound after several thousand miles of operation. When the engine was dismantled, it was found that the outer spring on one of the exhaust valves was too short to function properly. The short steel spring and an outer spring (both of patented and drawn high-carbon steel wire) taken from another cylinder in the same engine were examined in the laboratory to determine why one had distorted and the other had not. Investigation (visual inspection, microstructure examination, and hardness testing) supported the conclusion that the engine malfunctioned because one of the exhaust-valve springs had taken a 25% set in service. Relaxation in the spring material occurred because of the combined effect of improper microstructure (proeutectoid ferrite) plus a relatively high operating temperature. Recommendations included using quenched-and-tempered steel instead of patented and cold-drawn steel or using a more expensive chromium-vanadium alloy steel instead of plain carbon steel; the chromium-vanadium steel would also need to be quenched and tempered.
Book Chapter
Failure of Valve Spring Because of Grinding and Shot Peening Operations
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048124
EISBN: 978-1-62708-235-8
... Abstract Presence of transverse marks which were remnant of grinding was indicated in a failed valve spring made from ground rod. The shot-peening pattern was light at this location. A transverse crack was found to grow from one such mark under the influence of local stress fields until...
Abstract
Presence of transverse marks which were remnant of grinding was indicated in a failed valve spring made from ground rod. The shot-peening pattern was light at this location. A transverse crack was found to grow from one such mark under the influence of local stress fields until it was reoriented to the plane normal to the major tensile axis by sufficient loading. The shot-peening procedure was altered to create adequate surface compression at all stressed points on the springs.
Book Chapter
Corrosion-Fatigue Fracture of an H21 Tool Steel Safety-Valve Spring in Moist Air
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046874
EISBN: 978-1-62708-229-7
... Abstract The safety valve on a steam turbogenerator was set to open when the steam pressure reaches 2400 kPa (348 psi). The pressure had not exceeded 1790 kPa (260 psi) when the safety-valve spring shattered into 12 pieces. The steam temperature in the line varied from about 330 to 400 deg C...
Abstract
The safety valve on a steam turbogenerator was set to open when the steam pressure reaches 2400 kPa (348 psi). The pressure had not exceeded 1790 kPa (260 psi) when the safety-valve spring shattered into 12 pieces. The steam temperature in the line varied from about 330 to 400 deg C (625 to 750 deg F). Because the spring was enclosed and mounted above the valve, its temperature was probably slightly lower. The 195 mm (7 in.) OD x 305 mm (12 in.) long spring was made from a 35 mm (1 in.) diam rod of H21 hot-work tool steel. It had been in service for about four years and had been subjected to mildly fluctuating stresses. Analysis (visual inspection, 0.3x photographs, 0.7x light fractographs, and metallographic examination) supported the conclusions that the spring failed by corrosion fatigue that resulted from application of a fluctuating load in the presence of a moisture-laden atmosphere. Recommendations included replacing all safety valves in the system with new open-top valves that had shot-peened and galvanized steel springs. Alternatively, the valve springs could be made from a corrosion-resistant metal-for example, a 300 series austenitic stainless steel or a nickel-base alloy, such as Hastelloy B or C.
Image
Valve spring that failed due to fatigue. Fractographs of similar valve spri...
Available to PurchasePublished: 01 January 2002
Fig. 5 Valve spring that failed due to fatigue. Fractographs of similar valve springs are shown in Fig. 6 , 7 , 8 , 9 , 10 , and 11 . 0.8×
More
Image
Valve-spring failure due to residual shrinkage pipe. (a) Macrograph showing...
Available to PurchasePublished: 01 January 2002
Fig. 3 Valve-spring failure due to residual shrinkage pipe. (a) Macrograph showing fracture as indicated by arrow. (b) Fracture surface; pipe is indicated by arrow.
More
Image
Transverse failure origin in a valve spring made from ground rod. The trans...
Available to PurchasePublished: 01 January 2002
Fig. 6 Transverse failure origin in a valve spring made from ground rod. The transverse marks (arrow) are remnants of the grinding operation. 8×
More
Image
Fracture surface of a hardened steel valve spring that failed in torsional ...
Available to PurchasePublished: 01 January 2002
Fig. 37 Fracture surface of a hardened steel valve spring that failed in torsional fatigue. Arrow indicates fracture origin at a subsurface nonmetallic inclusion.
More
Image
Valve-spring failure due to residual shrinkage pipe. (a) Macrograph showing...
Available to PurchasePublished: 01 January 2002
Fig. 13 Valve-spring failure due to residual shrinkage pipe. (a) Macrograph showing fracture, as indicated by arrow. (b) Fracture surface; pipe is indicated by arrow.
More
Image
Valve-spring failure due to residual shrinkage during solidification. (a) M...
Available to PurchasePublished: 30 August 2021
Fig. 1 Valve-spring failure due to residual shrinkage during solidification. (a) Macrograph showing fracture, as indicated by arrow. (b) Fracture surface; pipe is indicated by arrow. Source: Ref 4
More
Image
in Prematurely Broken Valve Spring
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
Image
Valve-spring failure due to residual shrinkage pipe. (a) Macrograph showing...
Available to Purchase
in Fatigue Fracture of Alloy Steel Valve Springs Because of Pipe
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 1 Valve-spring failure due to residual shrinkage pipe. (a) Macrograph showing fracture, as indicated by arrow. (b) Fracture surface; pipe is indicated by arrow.
More
Image
Transverse failure origin in a valve spring made from ground rod. The trans...
Available to Purchase
in Failure of Valve Spring Because of Grinding and Shot Peening Operations
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 1 Transverse failure origin in a valve spring made from ground rod. The transverse marks (arrow) are remnants of the grinding operation. 8×
More
Image
Fracture surface of a hardened - steel valve spring that failed in torsiona...
Available to PurchasePublished: 15 January 2021
Fig. 44 Fracture surface of a hardened - steel valve spring that failed in torsional fatigue. Arrow indicates fracture origin at a subsurface nonmetallic inclusion .
More
Image
H21 tool steel safety-valve spring that fractured from corrosion fatigue in...
Available to Purchase
in Corrosion-Fatigue Fracture of an H21 Tool Steel Safety-Valve Spring in Moist Air
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Fig. 1 H21 tool steel safety-valve spring that fractured from corrosion fatigue in moist air. (a) Photograph of two of the 12 pieces into which the spring shattered. 0.3×. (b) Light fractograph showing typical corrosion-fatigue origin (arrow) and brittle final fracture. 0.7×
More
1