Skip Nav Destination
Close Modal
Search Results for
UNS S17700
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-4 of 4 Search Results for
UNS S17700
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006394
EISBN: 978-1-62708-217-4
... treatment (which would offer lower strength but higher toughness) could be used for this part. Grain boundaries Precipitates Scanning electron microscopy Sensitizing 17-7 PH UNS S17700 Intergranular corrosion Stress-corrosion cracking Heat treating-related failures Brittle fracture...
Abstract
A preflight inspection found a broken diaphragm from a side controller fabricated from 17-7 PH stainless steel in the RH 950 heat treatment condition. Failure occurred by cracking of the base of the flange-like diaphragm. The crack traveled 360 deg around the diaphragm. Scanning electron microscopy (SEM) revealed that the failure occurred by a brittle intergranular mechanism and stress-corrosion cracking (SCC), and indicated a failure mode of selective grain-boundary separation. The diaphragms were heat treated in batches of 25. An improper heat treatment could have resulted in the formation of grain boundary precipitates, including chromium carbides. It was concluded that failure of the diaphragm was due to a combination of sensitization caused by improper heat treatment and subsequent SCC. It was recommended that the remaining 24 sensor diaphragms from the affected batch be removed from service. In addition, a sample from each heat treat batch should be submitted to the Strauss test (ASTM A262, practice E) to determine susceptibility to intergranular corrosion. Also, it was recommended that a stress analysis be performed on the system to determine whether a different heat treatment (which would offer lower strength but higher toughness) could be used for this part.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0048169
EISBN: 978-1-62708-233-4
... engines Design Engine components Service life 17-7 PH UNS S17700 Fatigue fracture The part shown in the “original design” portion of Fig. 1 was a valve-seat retainer spring from a fuel control on an aircraft engine. This spring was found to be broken during disassembly of the fuel control...
Abstract
A valve-seat retainer spring (made of 0.23 mm thick 17-7 PH stainless steel) from a fuel control on an aircraft engine was found to be broken after 3980 h of service. The two inner tabs were found to be broken off. The part was revealed to be in relative rotation against its contacting member by the radial wear marks on the convex surface. Beach marks indicating that fatigue fracture had been initiated at the convex surface of the washer and had propagated across to the concave surface were revealed by examination of the fractured surfaces of the washer. The cracks were revealed to have originated in the 0.38-mm radius fillet between the tab and the body of the washer. It was interpreted from the analysis of the compound fracture that it was composed of fatigue fractures caused by the formed tab being loaded so as to compress the spring along the axis of its centerline and produce torsional vibrations. It was concluded that the two inner tabs had broken in fatigue as the result of cyclic loading that compressed and torsionally vibrated the spring. The fillets were replaced with slots to minimize stress concentration at the corners as a corrective measure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001547
EISBN: 978-1-62708-225-9
... for 17-7 PH CH900 and for Custom 455 CH850 stainless steels. Laboratory testing of these two materials in the form of compression springs confirmed the superiority of the 17-7 PH over Custom 455. Aerospace components Coil springs Surface defects 302 UNS S30200 17-7 PH UNS S17700 Custom 455...
Abstract
Life testing of cyclic loaded, miniature extension springs made of 17-7 PH stainless steel wire and AISI 302 Condition B stainless steel wire has shown end hook configuration to be a major source of weakness. To avoid cracking and subsequent fatigue failure, it was found that stress concentration depended on end hook bend sharpness. Also, interference fits are to be avoided in the end hooks of small springs. Additionally, a need for careful consideration of the stress-corrosion properties of candidate materials for spring applications has been demonstrated by stress-corrosion test results for 17-7 PH CH900 and for Custom 455 CH850 stainless steels. Laboratory testing of these two materials in the form of compression springs confirmed the superiority of the 17-7 PH over Custom 455.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001707
EISBN: 978-1-62708-217-4
... reactions. PHSS have been classified in three groups: austenitic, semi-austenitic, and martensitic. Representatives alloys of these three groups are: austenitic: A286 (S66286) semi-austenitic: 17-7 PH (S17700), PH 15-7 Mo (S15700), AM 350 (S35000), AM 355 (S35500) martensitic: PH 13-8 Mo...
Abstract
The failures of two aircraft components, one from a landing gear and the other from an ejector rack mechanism, were investigated. Both were made from PH 13-8 Mo (UNS S13800) precipitation-hardening stainless steel which had been heat treated to the H1000 and H950 tempers respectively and then chromium plated. The parts were characterized metallographically and mechanically and were found to be compliant. Detailed fractographic examination revealed that the first stage of both failures was similar: subsurface initiation of numerous cracks with a wide range of orientations and cleavage like features. The cracking was followed by fatigue in one case and catastrophic failure in the other. Hydrogen embrittlement was identified as the most likely mechanism of failure.