Skip Nav Destination
Close Modal
Search Results for
UNS N07750
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Search Results for UNS N07750
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Stress-Corrosion Cracking of Alloy X-750 Jet Pump Beams
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091659
EISBN: 978-1-62708-229-7
..., reheat treatment, or preload reduction. Boiling water reactors Jet pumps Nuclear reactor components Inconel X-750 UNS N07750 Stress-corrosion cracking Jet pumps, which have no moving parts, provide a continuous circulation path for a major portion of the core coolant flow in a boiling...
Abstract
Jet pumps, which have no moving parts, provide a continuous circulation path for a major portion of the core coolant flow in a boiling water reactor. Part of the pump is held in place by a beam-and-bolt assembly, wherein the beam is preloaded by the bolt. The Alloy X-750 beams had been heat treated by heating at 885 deg C (1625 deg F) for 24 h and aging at 705 deg C (1300 deg F) for 20 h. Jet pump beams were found to have failed in two nuclear reactors, and other beams were found to be cracked. Investigation (visual inspection, metallurgical examination, tension testing, and simulated service testing in oxygenated water) supported the conclusion that intergranular SCC under sustained bending loading was responsible for the failure. The location of the cracking was consistent with the results of stress analysis of the part. Recommendations included either replacing the beams, reheat treatment, or preload reduction.
Book Chapter
Stress-Corrosion Cracking of Inconel X-750 Springs
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048158
EISBN: 978-1-62708-229-7
... contaminants. Contaminants Helical springs Turbines Inconel X-750 UNS N07750 Intergranular fracture Stress-corrosion cracking Springs such as that shown in Fig. 1(a) were used for tightening the interstage packing ring in a high-pressure turbine. After approximately seven years of operation...
Abstract
Several of the springs, made of 1.1 mm diam Inconel X-750 wire and used for tightening the interstage packing ring in a high-pressure turbine, were found broken after approximately seven years of operation. Intergranular cracks about 1.3 mm in depth and oriented at an angle of 45 deg to the axis of the wire were revealed by metallographic examination. A light-gray phase, which had the appearance of liquid-metal corrosion, was observed to have penetrated the grains on the fracture surfaces. The spring wires were found to fracture in a brittle manner characteristic of fracture from torsional loading (along a plane 45 deg to the wire axis). Liquid-metal embrittlement was expected to have been caused by metals (Sn, Zn, Pb) which melt much below maximum service temperature of the turbine. The springs were concluded to have fractured by intergranular stress-corrosion cracking promoted by the action of liquid zinc and tin in combination with static and torsional stresses on the spring wire. As a corrective measure, Na, Sn, and Zn which were present in pigmented oil used as a lubricant during spring winding was cleaned thoroughly by the spring manufacturer before shipment to remove all contaminants.