Skip Nav Destination
Close Modal
Search Results for
UNS K21590
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-3 of 3 Search Results for
UNS K21590
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091028
EISBN: 978-1-62708-229-7
.... Electric power generation Overheating Superheater tubes ASTM A213 grade T22 UNS K21590 Creep fracture/stress rupture Failure occurred in a steel superheater tube in a power plant. The tube was specified as ASTM A 213 grade T 22, and the reported operating conditions were 13 MPa (1900 psi) at 482...
Abstract
Failure occurred in a steel superheater tube in a power plant. The tube was specified as ASTM A 213 grade T 22, and the reported operating conditions were 13 MPa (1900 psi) at 482 deg C (900 deg F). The tube carried superheated steam and was coal fired. Investigation (visual inspection, 2% nital etched 297x images, chemical analysis, and SEM fractographs) supported the conclusion that the superheater tube failed as a result of long-term overheating. Substantial creep damage reduced the strength of the tube to the point that overload failure occurred. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001330
EISBN: 978-1-62708-215-0
.... Boiler tubes Creep rupture Mechanical properties Overheating UNS K21590 UNS K01201 2.25Cr-1Mo ASTM A213 grade T22 ASTM A192 Creep fracture/stress rupture Background Two tubes from the superheater section of a two-drum boiler failed while in service. The tubes were identified as being...
Abstract
Two superheater tubes from a 6.2 MPa (900 psig) boiler failed in service because of creep rupture. One tube was carbon steel and the other was carbon steel welded to ASTM A213 Grade T22 (2.25Cr-1.0Mo) tubing. The failure in the welded tube occurred in the carbon steel section. Portions of the superheater were retubed five years previously with Grade 722 material. The failures indicated that tubes were exposed to long-term overheating conditions. While the carbon steel tube did not experience temperatures above the lower transformation temperature 727 deg C (1340 deg F), the welded tube did experience a temperature peak in excess of 727 deg C (1340 deg F). The long-term overheating conditions could have been the result of excessive heat flux and /or inadequate steam flow. In addition, the entire superheater bank should have been upgraded to Grade 722 material at the time of retubing.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001820
EISBN: 978-1-62708-241-9
... cracking. Based on test data and cost, A217-WC9 cast Cr–Mo steel would be a better alloy for the application. valve body corrosion H2S exposure Cr-Mo steel pitting cracks chemical analysis corrosion resistance A216-WCC (cast carbon steel) UNS J02503 A217-WC9 cast Cr–Mo steel UNS K21590...
Abstract
A group of control valves that regulate production in a field of sour gas wellheads performed satisfactorily for three years before pits and cracks were detected during an inspection. One of the valves was examined using chemical and microstructural analysis to determine the cause of failure and provide preventive measures. The valve body was made of A216-WCC cast carbon steel. Its inner surface was covered with cracks stemming from surface pits. Investigators concluded that the failure was caused by a combination of hydrogen-induced corrosion cracking and sulfide stress-corrosion cracking. Based on test data and cost, A217-WC9 cast Cr–Mo steel would be a better alloy for the application.